week 8 - Introduction to Confidence Intervals & Hypothesis Testing and Comparing Two Means

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/27

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

28 Terms

1
New cards

explain a 95% confidence interval

on average, 95% of the confidence intervals contain mu - success rate rate of the procedure

2
New cards

what is the general structure of a confidence interval for a known sigma? draw a distribution to illustrate a 90% CI

knowt flashcard image
3
New cards

as the level of confidence increases, what happens to the width of the interval? why is this the case?

  • as the level of confidence increases, the interval becomes wider

  • this is because the only thing changing is the multiplier - as level of confidence increases, multiplier also increases

4
New cards

what 3 factors must you consider when trying to determine the required sample size?

knowt flashcard image
5
New cards

how do you achieve a smaller margin of error (d)?

lower level of confidence, thus lower z multiplier

6
New cards

how do you calculate the appropriate sample size given a desired accuracy and margin of error?

knowt flashcard image
7
New cards

why do we tend to use wider intervals and a larger n when sigma is unknown?

to account for the extra variability from using s rather than sigma

8
New cards

describe the features of t distributions. what are the differences between t distributions and the normal distribution and when does the t dist = the normal dist?

  • longer tails thus give larger CIs - harder to reject H0

  • does not have a fixed width - changes depending on the sample size

  • normal dist is a single curve, t dist is a family of curves that changes with df

  • when df = infinity, you get the normal distribution

<ul><li><p>longer tails thus give larger CIs - harder to reject H0 </p></li><li><p>does not have a fixed width - changes depending on the sample size</p></li><li><p>normal dist is a single curve, t dist is a family of curves that changes with df</p></li><li><p>when df = infinity, you get the normal distribution</p></li></ul>
9
New cards

define a 95% confidence interval for mu with an unknown sigma

knowt flashcard image
10
New cards
term image
  • a) iv - success rate of procedure

  • b) all employees of the company near you

11
New cards
term image
knowt flashcard image
12
New cards
term image
knowt flashcard image
13
New cards

define the test statistic for a known sigma

knowt flashcard image
14
New cards
<p></p>

knowt flashcard image
15
New cards

when is there a relationship between confidence intervals and tests of significance?

knowt flashcard image
16
New cards
term image
knowt flashcard image
17
New cards
term image
knowt flashcard image
18
New cards
term image
knowt flashcard image
19
New cards
term image
knowt flashcard image
20
New cards
term image

no answer?

21
New cards
term image

p between 0.1, 0.2 (2 sided)

<p>p between 0.1, 0.2 (2 sided)</p>
22
New cards
term image

we are finding the prob that men will have a higher average, thus X1 (females) - X2 (males) will be negative → we are finding the prob that Z is less than a certain value

<p>we are finding the prob that men will have a higher average, thus <strong><span>X1 (females) - X2 (males) will be negative</span></strong> → we are finding the prob that Z is <strong><span>less than</span></strong> a certain value</p>
23
New cards
<p>explain these calculations </p>

explain these calculations

  • we can take the means of the differences, as the expectation of the differences is simply X1-X2

  • we can find SD by adding the expected variances. each independent variance = SD^2/n

  • thus, SD of each independent sample is sqrt (SD^2/n). we can add the SDs as they are independent (E(X1-X2))

<ul><li><p>we can take the means of the differences, as the expectation of the differences is simply X1-X2</p></li><li><p>we can find SD by adding the expected variances. each independent variance = SD^2/n</p></li><li><p>thus, SD of each independent sample is sqrt (SD^2/n). we can add the SDs as they are independent (E(X1-X2))</p></li></ul>
24
New cards

how do you calculate the 2 sample Z statistic? how is the 2 sample t statistic different to this?

t statistic using s rather than sigma

<p>t statistic using s rather than sigma</p>
25
New cards

how do you construct a confidence interval for a 2 sample t test?

we want to know if zero is within the confidence interval

<p>we want to know if zero is within the confidence interval</p>
26
New cards
<p>does the treatment group result in a significantly larger mean?</p>

does the treatment group result in a significantly larger mean?

27
New cards
term image
knowt flashcard image
28
New cards
term image
knowt flashcard image