1/32
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Volume of a Cylinder
pir²h
Area of a Cylinder
2pirh+2pir²
Antideriv of cosx
sinx+c
Anti deriv of sec²x
Tanx+C
Antideriv of sin
-cosx+c
Antideriv of secxtanx
secx+c
Antideriv of csc²x
-cotx+c
Antideriv of cscxcotx
-cscx+c
Volume of box
x²y
Area of box
2x²+4xy
Distance formula
r*t
V of rectangle
lwh
Riemann Sum?
xi=a+ideltax, deltax=(b-a)/n, f(xi), lim=f(xi)deltax
i
n(n+1)/2
i²
n(n+1)(2n+1)/6
i³
n²(n+1)²/4
abs valu
A=1/2bh
Sqrt something -x²
A=pir²
Trapezoid
A=(1/2)(b1+b2)h
Fundamental theorem of calc
F(h(x))h’(x)-f(g(x))g’(x)
X=
Right-left
Y=
Top-bottom
Cavaleri principal
A(x)dx
Prove volume right circular cone
0 to h pi(rx/h)²
Prove Volume of pyramid
0 to h (l1 x w1dx)=(lx/h)(wx/h)dx
Volume Rotated around region
pi(f(x))²dx
Washer method (two functions)
pi(rout)²-(ri)²dx
Shell
2pixf(x)dx
Arc length
sqrt(1+(f(x))²)dx
Proof volume of sphere by rotation
X²+y²=r², solve for y, 2 pisqrt(r²-x²)²dx
Proof of sa of sphere
2 2pi(rad)(arc)dx=2 2pi (sqrt(r²-x²))(sqrt(1+x²/r²-x²))dx
Surface area x-axis
2pi(rad)(arc)dx
Sa y axis
2pi(x)(arc)dx