1/10
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Law of SInes
Law of Cosines
c² = a² + b² - 2ab cos(C).
Area of a Triangle (SAS, AAS)
AreaK=\frac12bc\sin a
Area of a Triangle (SSS)
AreaK=\sqrt{s(s-a)(s-b)(s-c)} s=\frac12\left(a+b+c\right)
magnitude
||v|| = √(a² + b²)
direction
tan\theta=\frac{v^2}{v^1} $$
Converting Polar to Rectangular
r²=x²+y²
x=r\cos\left(\theta\right)
y=r\sin(theta)
Quotient Identities
tan(\theta)=\frac{sin(\theta)}{cos(\theta)}
cot\left(\theta\right)=\frac{\cos\left(\theta\right)}{\sin\left(\theta\right)}
Pythagorean Identities
cos^{2}(\theta)+\sin^2\left(\theta\right)=1
1+tan^2\left(\theta\right)=\sec^2\left(\theta\right)
1+cot^2\left(\theta\right)=\csc^2\left(\theta\right)
Sum and Difference Equations (cos)
cos(a-b) =cosacosb+sinasinb
cos(a+b)=cosacosb-sinasinb
Sum and Difference Equations (sin, tan)
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-cosasinb
tan(a+b)=\frac{\tan a+\tan b}{1-\tan a\tan b}
tan\left(a-b\right)=\frac{\tan a-\tan b}{1+\tan a\tan b}