Sorting Algorithms

0.0(0)
studied byStudied by 1 person
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/6

flashcard set

Earn XP

Description and Tags

Brute Force

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

7 Terms

1
New cards

Bubble Sort - O(n²)

def bubble_sort(arr):
    n = len(arr)
    for i in range(n):
        for j in range(0, n - i - 1):
            if arr[j] > arr[j + 1]:
                temp = arr[j]
                arr[j] = arr[j + 1]
                arr[j + 1] = temp
    return arr

2
New cards

Selection Sort - O(n²)

def selection_sort(arr):
    n = len(arr)
    for i in range(n):
        min_index = i
        for j in range(i + 1, n):
            if arr[j] < arr[min_index]:
                min_index = j
        temp = arr[i]
        arr[i] = arr[min_index]
        arr[min_index] = temp
    return arr

3
New cards

Insertion Sort - O(n²)

def insertion_sort(arr):
    n = len(arr)
    for i in range(1, n):
        key = arr[i]
        j = i - 1
        while j >= 0 and arr[j] > key:
            arr[j + 1] = arr[j]
            j -= 1
        arr[j + 1] = key
    return arr

4
New cards

Merge Sort - O(n log n)

def merge_sort(arr):
    if len(arr) <= 1:
        return
    mid = len(arr) // 2
    left = arr[:mid]
    right = arr[mid:]
    merge_sort(left)
    merge_sort(right)

    i = j = k = 0
    while i < len(left) and j < len(right):
        if left[i] < right[j]:
            arr[k] = left[i]
            i += 1
        else:
            arr[k] = right[j]
            j += 1
        k += 1

    while i < len(left):
        arr[k] = left[i]
        i += 1
        k += 1

    while j < len(right):
        arr[k] = right[j]
        j += 1
        k += 1

5
New cards

Quick Sort - O(n log n) average case

def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quick_sort(left) + middle + quick_sort(right)
6
New cards

Heap Sort - O(n log n)

import heapq

def heap_sort(arr):
    heapq.heapify(arr)
    return [heapq.heappop(arr) for _ in range(len(arr))]
7
New cards

Shell Sort - O(n log n) (depends on gap sequence)

def shell_sort(arr):
    n = len(arr)
    gap = n // 2
    while gap > 0:
        for i in range(gap, n):
            temp = arr[i]
            j = i
            while j >= gap and arr[j - gap] > temp:
                arr[j] = arr[j - gap]
                j -= gap
            arr[j] = temp
        gap //= 2
    return arr