Air and Water Locomotion

0.0(0)
studied byStudied by 3 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/12

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No study sessions yet.

13 Terms

1
New cards
  • Explain how an airfoil generates lift and compare its function in birds, bats, and cetaceans (hydrofoil in the case of cetaceans).

2
New cards
<p>Provide the four forces that act on flying organisms.</p>

Provide the four forces that act on flying organisms.

  1. lift

  2. thrust

  3. drag

  4. gravity

3
New cards
<p>Know the parts of a bat's patagium and what they are involved in.&nbsp;</p>

Know the parts of a bat's patagium and what they are involved in. 

  1. Uropatagium

    1. controls turning

  2. Propatagium

    1. controls lift

  3. Wing Tip

    1. controls thrust

4
New cards
<p>Adaptations of low vs. high aspect ratio wings in bats</p>

Adaptations of low vs. high aspect ratio wings in bats

Low Aspect Ratio Wings

High Aspect Ratio Wings

Nectar feeders

Insectivores 

Slow, agile, and highly manuverable 

Swift, efficient, and high-speed

Live in forests + dense vegetation

Live in open areas

Small foraging range

Large foraging range

Poor dispersers/migrators

Good dispersers/migrators

5
New cards

Birds vs bat flight

Bird Flight

Bat Flight

Wings = modified forelimbs with feathers

Wings = elongated digits with patagium membrane

Feathers generate airfoil + lift

Patagium surface generates lift

Stiff primaries generate thrust

Wing tips generate thrust

Rigid feathers = thicker airfoil → efficient lift per wingbeat

Thin, flexible membrane = thinner airfoil → must flap wings frequently to maintain lift

Inflexible, lightweight skeleton

Flexible skeleton + uropatagium

Keeled sternum = strong flight muscles

Less prominent keeled sternum 

High efficiency for long distance flight

Lower efficiency for long distances

Best for tight areas 

<table style="min-width: 50px;"><colgroup><col style="min-width: 25px;"><col style="min-width: 25px;"></colgroup><tbody><tr><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;"><strong>Bird Flight</strong></span></p></td><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;"><strong>Bat Flight</strong></span></p></td></tr><tr><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Wings = modified forelimbs with feathers</span></p></td><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Wings = elongated digits with patagium membrane</span></p></td></tr><tr><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Feathers generate airfoil + lift</span></p></td><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Patagium surface generates lift</span></p></td></tr><tr><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Stiff primaries generate thrust</span></p></td><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Wing tips generate thrust</span></p></td></tr><tr><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Rigid feathers = thicker airfoil → efficient lift per wingbeat</span></p></td><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Thin, flexible membrane = thinner airfoil → must flap wings frequently to maintain lift</span></p></td></tr><tr><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Inflexible, lightweight skeleton</span></p></td><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Flexible skeleton + uropatagium</span></p></td></tr><tr><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Keeled sternum = strong flight muscles</span></p></td><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Less prominent keeled sternum&nbsp;</span></p></td></tr><tr><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">High efficiency for long distance flight</span></p></td><td colspan="1" rowspan="1" style="border-width: 1pt; border-style: solid; border-color: rgb(0, 0, 0); vertical-align: top; padding: 5pt; overflow: hidden; overflow-wrap: break-word;"><p style="text-align: center;"><span style="background-color: transparent;">Lower efficiency for long distances</span></p><p style="text-align: center;"><span style="background-color: transparent;">Best for tight areas&nbsp;</span></p></td></tr></tbody></table><p></p>
6
New cards

True flight vs gliding

1 similarity and 1 difference

similarity

  • aspect ratio determines effectivness of glide

difference

  • gliding flight path is downward

<p>similarity</p><ul><li><p>aspect ratio determines effectivness of glide</p></li></ul><p>difference</p><ul><li><p>gliding flight path is downward</p></li></ul><p></p>
7
New cards

Transition of cetaceans from semi-aquatic ancestors to fully aquatic forms

semi-aquatic (Archaeocetes)

  • crocodile-like lifestyle

  • limbs modified for swimming (webbed feet) but still weight-bearing on land

  • nostrils begin to shift upward on skull (top of snout → like a crocodile)

fully-aquatic

  • streamlined body (torpedo-looking)

  • no hair → skin = reduced drag

  • no hind limbs

  • front limbs → flippers

  • compressed and fused vertebrae

  • no external ears or genitalia

<p>semi-aquatic (Archaeocetes)</p><ul><li><p>crocodile-like lifestyle</p></li></ul><ul><li><p>limbs modified for swimming (webbed feet) but still weight-bearing on land</p></li><li><p>nostrils begin to shift upward on skull (top of snout → like a crocodile)</p></li></ul><p></p><p>fully-aquatic</p><ul><li><p>streamlined body (torpedo-looking)</p></li><li><p>no hair → skin = reduced drag</p></li><li><p>no hind limbs</p></li><li><p>front limbs → flippers</p></li><li><p>compressed and fused vertebrae</p></li><li><p>no external ears or genitalia</p></li></ul><p></p>
8
New cards

Identify key adaptations in cetaceans for energy conservation and explain their functional significance for efficient locomotion.

  • streamlined body

    • torpedo-like → minimizes drag + pressure on body = faster

  • hairless/smooth skin

    • reduces drag + improves swimming efficiency

  • loss of appendages (no hind limbs, front limbs → flippers)

    • no hind limbs = reduces major source of drag, enhances streamlined body

    • flippers = generate thrust, reduce drag, maneuverability, lift

  • telescoping skull

    • reduced drag + smooth airflow across face + blowhole

<ul><li><p><strong>streamlined body</strong></p><ul><li><p>torpedo-like → minimizes drag + pressure on body = faster</p></li></ul></li><li><p><strong>hairless/smooth skin</strong></p><ul><li><p>reduces drag + improves swimming efficiency</p></li></ul></li><li><p><strong>loss of appendages (no hind limbs, front limbs → flippers)</strong></p><ul><li><p>no hind limbs = reduces major source of drag, enhances streamlined body</p></li><li><p>flippers = generate thrust, reduce drag, maneuverability, lift</p></li></ul></li><li><p><strong>telescoping skull</strong></p><ul><li><p>reduced drag + smooth airflow across face + blowhole</p></li></ul></li></ul><p></p>
9
New cards

High vs. low aspect ratio tail flukes in cetaceans

High-Aspect Ratio Tail Flukes

Low-Aspect Ratio Tail Flukes

Stiff, streamlined bodies

Flexible bodies

Less initial thrust - made for steady swimming

Larger thrust force

Slow acceleration 

Quick acceleration 

Low energy cost

High energy cost

10
New cards

At what point does porpoising in dolphins become beneficial as it relates to reductions in drag versus expending the energy required to jump?

Low speed: Swimming is best because the energy required to overcome gravity and leap out of the water is greater than the energy lost to water drag.

High speed: Porpoising is best because the high drag from pushing through the water near the surface becomes more costly than porpoising. 

  • “Crossover speed”: Once dolphins reach a high speed (around 3.5m/s), the energy saved by avoiding water resistance surpasses the energy cost of jumping. 

11
New cards

Convergent adaptations in Sirenia vs. Cetacea

Sirenia

Cetacea

Dense bones -> buoyancy control

Low bone density + blubber -> buoyancy control

No dorsal fin

Most have dorsal fin

Body adapted for energy-efficient foraging, not speed

Body adapted for fast, efficient swimming

Vulnerable to boat strikes

Vulnerable to fishing net entanglement

12
New cards
  • Compare the locomotor strategies of otariids (eared seals) and phocids (earless seals) in both aquatic and terrestrial contexts, linking morphology to movement efficiency.

13
New cards
  • Discuss convergent adaptations for aquatic life in marine carnivores (seals, sea lions, otters) and semi-aquatic mammals (beaver, desman, potamogale), focusing on body streamlining, limb modification, and tail/flipper structure.