Results for "sunlight"

Filters

Flashcards

Q: What gas do plants absorb from the atmosphere? A: Carbon dioxide Q: What is the chemical symbol for water? A: H₂O Q: What is the most abundant element in th universe? A: Hydrogen Q: What force keeps us grounded on Earth? A: Gravity Q: What organ in the human body is primarily responsible for pumping blood? A: Heart Q: What is the largest planet in our solar system? A: Jupiter Q: What is the hardest natural substance on Earth? A: Diamond Q: What element is essential for the production of red blood cells? A: Iron Q: What process do plants use to make their food? A: Photosynthesis Q: What is the boiling point of water at sea level in Celsius? A: 100°C Q: Which vitamin is produced when a person is exposed to sunlight? A: Vitamin D Q: What type of energy is stored in a stretched rubber band? A: Potential energy Q: What is the study of life called? A: Biology Q: What is the basic unit of life? A: Cell Q: What is the speed of light in a vacuum? A: Approximately 299,792,458 meters per second Q: Who formulated the three laws of motion? A: Sir Isaac Newton Q: What is the unit of electrical resistance? A: Ohm Q: What phenomenon explains the bending of light when it passes through different mediums? A: Refraction Q: What is the first law of thermodynamics? A: Energy cannot be created or destroyed, only transferred or changed in form. Q: What particle carries a positive charge? A: Proton Q: What is the term for materials that do not conduct electricity? A: Insulators Q: What is the formula for calculating force? A: Force = Mass × Acceleration (F = ma) Q: What is the SI unit of power? A: Watt Q: What is the phenomenon where two waves superimpose to form a resultant wave? A: Interference Q: What is the term for the resistance of any physical object to a change in its state of motion or rest? A: Inertia Q: Who is known for the theory of relativity? A: Albert Einstein Q: What is the study of motion without considering its causes? A: Kinematics Q: What is the effect where a wave changes direction because of an obstacle? A: Diffraction Q: What is the process by which unstable atomic nuclei lose energy by emitting radiation? A: Radioactive decay
Updated 66d ago
flashcards Flashcards (6)
The American Sleep Disorders Association, in 1990, initiated a 5 year process to develop the widely used International Classification of Sleep Disorders (ICSD). The original ICSD listed 84 sleep disorders, each with descriptive details and specific diagnostic, severity, and duration criteria. The ICSD had 4 major categories: (1) dyssomnias, (2) parasomnias, (3) disorders associated with medical or psychiatric disorders, (4) "proposed" sleep disorders. The ICSD has since been revised twice. The second edition, ICSD-2 was released in 2005 which contains a list of 77 sleep disorders. That new list was broken down into 8 sub-categories: (1) Insomnia; (2) Sleep-related breathing disorder; (3) Hypersomnia not due to a sleep related breathing disorder; (4) Circadian rhythm sleep disorder; (5) Parasomnia; (6) Sleep-related movement disorder; (7) Isolated Symptoms, apparently normal variants, and unresolved issues; and (8) Other sleep disorders. A third edition of the ICSD was released in 2014. The major clinical divisions were unchanged in the third edition from the 2nd version, but there was an addition of variations in the diagnostic criteria for pediatric patients with obstructive sleep apnea, and there was a heading of Developmental Issues added to each section of disorders that have developmentally-specific clinical features in order to aid physicians in diagnosing those patients (specifically 9-CM and 10 CM). Sleep Disorders Categories The ICSD-3 lists about 77 sleep disorders which are divided into the following categories: Insomnia Sleep-related breathing disorder Central Disorders of Hypersomnolence Circadian rhythm sleep disorder Parasomnias Sleep-related movement disorder Some of the above categories have a section for isolated Symptoms, apparently normal variants, and unresolved issues Other sleep disorders There are some other sleep disorders that are divided into two appendices of the ICSD-2 manual. They are as follows: Sleep Related Medical and Neurological Disorders; and ICD-10-CM Coding for Substance-induced Sleep Disorders Study the disorders listed under each of the above categories until you have a good idea of what is included in each. There is a complete list of all the current classified sleep disorders in chapter 27, beginning on page 476 of your Sleep Disorders Medicine, 4th edition textbook. Insomnias Insomnias are disorders that usually produce complaints of not enough sleep, poor quality of sleep. Patient perception can play a role in the complaints. Occasionally, a patient may perceive that they are getting poor quality or not enough sleep even though they may be getting what we think is a normal night’s rest. Insomnias are defined by a repeated difficulty initiating sleep, not sleeping long enough, or poor quality sleep regardless of the amount of sleep time. Primary insomnia would not be due to another sleep disorder. If another sleep disorder such as OSA is causing the insomnia, then we call that secondary insomnia. These disorders may require medical treatment if they are long-lasting. Temporary insomnia due to a stressful situation or life event may correct itself with time. The types of insomnia are covered on pages 476 and 480 of your textbook. Sleep-Related Breathing Disorders These are disorders that involve disordered respiration, or breathing during sleep. These may be obstructive or not. There can be various causes of both. Central apnea syndromes include Cheyenne-Stokes breathing pattern and high-altitude periodic breathing. Cheyenne-Stokes is usually associated with either congestive heart failure or a traumatic brain injury which would actually be called secondary Central Sleep Apnea because it is secondary to another problem. It can also occur due to extreme old age, or a “worn-out” heart (a pacemaker may be needed for this type of patient). You will see patients like this occasionally. Primary Central Sleep Apnea has no apparent cause but still results in an irregular breathing pattern. These patients are not necessarily good candidates for CPAP because their breathing problem may not involve an obstruction. If not, you will likely see an increase in the number or length of central apneas after placing them on CPAP. There are newer PAP technologies that have been developed in recent years that do have some effect on the regulation of these types of patients’ breathing pattern but may show limited success in extending life expectancy. The obstructive type of breathing disorders, on the other hand, do respond well to treatment. These will likely make up the vast majority of patients that you will encounter in the sleep laboratory. Refer to pages 476 and 481 for more detailed examples of these disorders. Central Disorders of Hypersomnolence If you break down the word “hypersomnia” into its root terms as you did in medical terminology, it should be apparent that these disorders involve excessive sleepiness. However, the excessive sleepiness cannot be the result of another class of disorder. If a patient has another such disorder, that disorder must be effectively treated before a diagnosis of hypersomnia not due to a sleep-related breathing disorder can be made. These patients may have nights of uninterrupted sleep, but they still have unintended or unwanted lapses into sleep during the day. There can be many different causes of this; some of which are very interesting. Narcolepsy and Kleine-Levin Syndrome fall into this category along with some neurologic or psychiatric disorders. Circadian Rhythm Sleep Disorder Circadian rhythm sleep disorders are sleep disorders related to the internal clock of the human body resulting in an irregular sleep-wake cycle. Patients with these sleep disorders have circadian rhythms that make it difficult for them to function in society. The three extrinsic circadian rhythm sleep disorders are the time zone change syndrome, shift work sleep disorder, and irregular sleep-wake pattern (secondary circadian rhythm disorders). Three intrinsic circadian rhythm sleep disorders are delayed sleep phase syndrome, advanced sleep phase syndrome, and non-24-hour sleep-wake disorder (primary circadian rhythm disorders). For Circadian Rhythm disorders, refer to page 482 of your textbook. Time Zone Change Syndrome (Jet Lag Syndrome): Jet lag is experienced as a result of eastward or westward jet travel, after crossing several time zones, disrupting synchronization between the body's inner clock and its external cues. Symptoms do not occur after north-south travel. jet lag symptoms consist of difficulty in maintaining sleep, frequent arousals, and excessive daytime somnolence. Delayed Sleep Phase Syndrome: The ICSD-2 defines delayed sleep phase syndrome (DSPS) as a condition in which a patient's major sleep episode is delayed in relation to a desired clock time. This delay causes symptoms of sleep-onset insomnia or difficulty awakening at the desired time. Typically, patients go to sleep late (between 2:00 am and 6:00 am) and awaken during late morning or afternoon hours (between 10:00 am and 2:00 pm). Patients cannot function normally in society due to disturbed sleep schedules. Patients may try hypnotic medications or alcohol in attempts to initiate sleep sooner. DSPS patients may be treated by the use of chronotherapy (intentionally delays sleep onset by 2-3 hours on successive days until the desired bedtime has been achieved) or phototherapy (exposure to bright light on awakening). Advanced Sleep Phase Syndrome: Advanced sleep phase syndrome is characterized by patients going to sleep in the early evening and wake up earlier than desired in the morning (2:00 am-4:00 am). Because the patients have early morning awakenings, they experience sleep disruption and daytime sleepiness if they don't go to sleep at early hours. ASPS is most commonly seen in elderly individuals. Diagnosis is based upon sleep logs and characteristic actigraphic recordings made over several days. Chronotherapy may be used to treat ASPS; however, this therapy is not as successful in ASPS as in DSPS. Bright light exposure in the evening has been successful in delaying sleep onset. Non-24-Hour Sleep-Wake Disorder: Also known as Non-entrained, free running, or hypernychthemeral syndrome, is a disorder characterized by a patient's inability to maintain a regular bedtime and a sleep onset that occurs at irregular hours. Patients display increases in the delay of sleep onset by approximately one hour per sleep-wake cycle, causing an eventual progression of sleep onset through the daytime hours and into the evening. These individuals fail to be entrained or synchronized by usual time cues such as sunlight or social activities. This disorder is extremely rare and is most often associated with blindness. Parasomnia The parasomnias are a class of sleep disorders associated with arousals, partial arousals, and sleep stage transitions. They are dysfunctions (including movements and behaviors) that are associated with sleep, or that occur during sleep. Most parasomnias occur during delta sleep or slow wave sleep, although some can occur during any stage. REM Behavior Disorder, Nightmare Disorder, and Recurrent Isolated Sleep Paralysis are also included in this group although they are all associated with REM sleep. Rem Behavior Disorder (RBD) may involve a very drastic or sometimes violent dream enactment. Approximately 88% of known cases are in males. Elderly patients (over the age of 60) make up a high percentage of known cases (60%). RBD is now considered to be a possible indication of a future neurodegenerative disease such as Parkinson’s. Around 50% of patients with REM parasomnias also have some type of central nervous system disorder, and almost 10% have a psychiatric disorder. The treatment for these disorders is usually limited to securing the environment, but can also include the prescription of clonazepam. Think of parasomnias as things that patients may also do while sleeping, excluding movement disorders (other than RBD) which used to be included in this category as well. Examples would be Night Terrors, Nightmares, Hallucinations, Sleepwalking, or Enuresis (bed-wetting), etc. Parasomnias are covered in your text book on pages 482 - 484. Sleep-Related Movement Disorders Bruxism: Bruxism (teeth grinding) occurs most commonly in individuals between ages 10 and 20 years and is commonly noted in children with mental retardation or cerebral palsy. Bruxism is noted most prominently during NREM stages I and II and REM sleep. Episodes are characterized by stereotypical tooth grinding and are often precipitated by anxiety, stress, and dental disease. Occasionally, familial cases have been described. Usually, no treatment is required, but in extreme cases, dental reconstruction and appliances such as mouth guards may be needed. Periodic Limb Movement Disorder: Periodic limb movement disorder (PLMD, or PLMS for Periodic Limb Movements in Sleep) is a common sleep disorder affecting approximately 34% of people over the age of 60 years. PLMD can be defined as repetitive, involuntary limb movements during sleep. These movements are seen mostly in stage II sleep, and not in REM sleep due to muscle atonia in REM. The criteria for the leg movements to qualify as PLMS, the leg movements must last from 0.5 seconds to 5 seconds in duration each, there must be a gap of 5 to 90 seconds between each one, and there must be a cluster of at least 4 of these movements. Symptoms of PLMS often include frequent EEG arousals, fragmented sleep architecture, daytime sleepiness, and a disturbed bed partner. Treatment of PLMS usually includes medications. However, if the leg movements are related to respiratory events, they usually disappear when the respiratory events are corrected via CPAP, BiPAP, dental appliances, etc. The most common medications used to treat PLMS include Clonazepam, Dopamine Agonists, Anticonvulsants, and Opiates. Restless Legs Syndrome: Restless Legs Syndrome (RLS) is a disorder that causes discomfort in the legs and an irresistible urge to move them. This scenario can occur while the patient is asleep or awake. Patients often describe this discomfort as an itching, crawling, or creeping sensation in their legs. RLS is a common disorder, and affects more than 5% of the total population. Most RLS patients begin having symptoms before the age of 20, and continue to have these symptoms throughout their lives. Most patients with RLS also have PLMS. The most common treatments for these disorders are medications, including benzodiazepines, dopamine, opiates, and alpha-adrenergic blockers. Nocturnal Leg Cramps: Nocturnal leg cramps are intensely painful sensations that are accompanied by muscle tightness occurring during sleep. These spasms usually last for a few seconds but sometimes persist for several minutes. Cramps during sleep are generally associated with awakening. Many normal individuals experience nocturnal leg cramps. Causes remain unknown. Local massage or movement of the limbs usually relieves the cramps. Rhythmic Movement Disorder: Rhythmic movement disorder occurs mostly in infants younger than 18 months of age, is occasionally associated with retardation, and is rarely familial. It is comprised of three characteristic movements: head rolling, headbanging, and body rocking. These episodes are usually not remembered once the person awakens. It affects approximately three times as many males as females. Treatment for rhythmic movement disorder usually includes behavior modification, benzodiazepines, and antidepressants. Rhythmic movement disorder is a benign condition, and usually, the patient outgrows the episodes. Other rhythmic movement disorders can be related to the use of a drug or substance, or to another medical condition. Isolated Symptoms, Apparently Normal Variants, and Unresolved Issues This category includes disorders that are borderline normal or are normal variants. These include such examples as long sleeper, short sleeper, hypnic jerks, and other types of twitching or jerking movements that may only occur at sleep onset or in newborns. You have probably seen someone display a hypnic jerk as they fell asleep, or you may have woken yourself jerking because you felt like you were falling. Things like snoring or sleep-talking could be included in this case if they are not causing symptoms of insomnia or excessive daytime sleepiness but are disturbing to the patient or other people. Other Sleep Disorders A diagnosis in this category gives the physician an option for when the diagnosis may not be clear or too unusual to clearly fit into one of the other categories. This diagnosis may often be used as a temporary diagnosis until the actual cause of the disorder is determined. Environmental Sleep Disorder could be something in the surrounding environment, such as a barking dog, that is disturbing the patient's sleep enough to cause symptoms. Appendix A: Sleep-Related Medical and Neurological Disorders This category includes disorders that sometimes occur unrelated to sleep, but are related to sleep in these cases. Examples are sleep-related epilepsy, headaches, Sleep-related Myocardial Ischemia, or gastroesophageal reflux. Fibromyalgia used to be included in this section. While fibromyalgia is not necessarily a disorder that is only related to sleep, it can cause arousals, or disruptions of the patient's sleep and is a common diagnosis of patients that you will see. Appendix B: Other Psychiatric/Behavioral Disorders Frequently Encountered in the Differential Diagnosis of Sleep Disorders This section includes mood disorders, anxiety disorders, schizophrenia, or any other psychiatric diagnosis that may affect the patient's quality of sleep. Therefore, you will also likely see patients who have been referred by a psychiatrist on occasions. Intrinsic and Extrinsic Sleep Disorders These are terms that were previously used to differentiate between disorders that originated from within the body and those that were caused by something in the outside environment. However, I think that you could still see these terms again, so I think it is a good idea for you to be familiar with this terminology. INTRINSIC DISORDERS Intrinsic disorders include various types of insomnia and restless legs syndrome. Narcolepsy and recurrent hypersomnia are disorders of excessive sleepiness. Hypersomnolence can also be caused by narcolepsy, apnea, sleep disordered breathing, or periodic limb movements in sleep. EXTRINSIC DISORDERS Extrinsic sleep disorders include those that originate or develop from causes outside the body. Some of these dyssomnias found within this category include: conditions of inadequate sleep hygiene, altitude insomnia, food allergy insomnia, nocturnal eating, limit-setting sleep disorder, and sleep-onset association disorder. Sleep apnea is a disorder that commonly afflicts more than 12 million people in the United States. The word apnea is of Greek origin and means "without breath." Patients diagnosed with sleep apnea will literally stop breathing numerous times while they are asleep. The apneas on average can last from ten seconds to longer than a minute. These events can occur hundreds of times during a single night of sleep. Obstructive sleep apnea (OSA) is the most common type of apnea found within the category of sleep disordered breathing. OSA is caused by a complete obstruction of the airway, while partial closure is referred to as a hypopnea. The hypopnea is characterized by slow, shallow breathing. There are three types of apneas: obstructive, central, and mixed. So, sleep disordered breathing may be due to an airway obstruction (OSA), an abnormality in the part of the brain that controls respiration (central sleep apnea), or a combination of both ( mixed sleep apnea). This lesson will concentrate on obstructive sleep apnea. OSA occurs in approximately two percent of women and four percent of men over the age of 35. Check out this video for a good example of an OSA patient: Sleep Apnea - Hard to Watch... (Links open in a new window. Right click on link and choose "open in a new window") Obstructive Sleep Apnea sufferers are not always the ones that you would expect. Check out this video of an Asian woman, especially near the end: Sleep Apnea Causes of Obstructive Sleep Apnea The exact cause of OSA is difficult to pinpoint. The site of obstruction in most patients is the soft palate, extending to the region at the base of the tongue. There are no rigid structures, such as cartilage or bone, in this area to hold the airway open. When a patient is awake, muscles in the region keep the passage open. However, a patient who tests positive for OSA will experience a collapsing of the airway when they are asleep. Thus, the obstruction occurs, and the patient awakens to open the airway. The arousal from sleep lasts only a few seconds, but brief arousals disrupt continuous sleep. When the sleep architecture is fragmented, the patient will be prevented from obtaining SWS and REM sleep ( these stages of sleep are needed by the body to replenish its strength ). Once normal breathing is restored, the person falls asleep only to repeat the cycle throughout the night. Typically, the frequency of waking episodes is somewhere between 10 and 60. A patient with severe OSA may have more than 100 waking episodes in a night of sleep. Often, the OSA patient will complain of nonrestorative sleep and excessive daytime sleepiness. Risk Factors The primary risk factor for OSA is excessive weight gain. The accumulation of fat on the sides of the upper airway causes it to become narrow and predisposed to closure when the muscles relax. Age is another prominent risk factor. Loss of muscle mass is a common occurrence associated with the aging process. If muscle mass decreases in the airway, it may be replaced with fat, leaving the airway narrow and soft. Men have a greater risk for OSA. Male hormones can cause structural changes in the upper airway. Below are other common predisposing factors associated with OSA: Anatomic abnormalities, such as a receding chin Enlarged tonsils and adenoids ( the main causes of OSA in children) Family history of OSA ( However, there has been no medically documented facts stating a generic inheritance pattern ) Use of alcohol and sedative drugs, which relax the musculature in the surrounding upper airway Smoking, which can cause inflammation, swelling, and narrowing of the upper airway Hypothyroidism, acromegaly, amyloidosis, vocal cord paralysis, post-polio syndrome, neuromuscular disorders, Marfan's syndrome, and Down syndrome Nasal and sinus congestion or problems Symptoms of OSA The nightly disruption and fragmentation of normal sleep architecture will cause the patient to experience the feeling of nonrestorative sleep. The most common complaint from someone who suffers from OSA is excessive daytime sleepiness (EDS) . The numerous disruptions and arousals will prevent the patient from obtaining a continuous deep sleep. Thus, the individual could also be prone to automobile accidents, personality changes, decreased memory, impotence, and depression. Patients are rarely aware or recall the frequent awakenings that occur following the obstructive episodes. EDS may be mild, moderate, or severe. Some patients will complain of falling asleep in a non stimulating environment, such as reading a book or a newspaper in a quiet room. Severe OSA patients may complain of falling asleep in a stimulating environment, such as during business meetings, eating, or casual conversation. One of the most dangerous scenarios is patients who suffer from OSA can fall asleep behind the wheel. Patients will often complain of feeling like they have not slept at all no matter of the length of time in bed. The same holds true for napping. Other indicators or symptoms of possible OSA include morning headaches and frequent urination during the night. Physical signs that coincides with characteristics of OSA patients include snoring, witnessed apneic episodes, and obesity. Not every individual who snores will test positive for OSA, but most patients who have OSA will snore with moderate to loud levels. Hypertension is prevalent in patients with OSA, although the exact relationship is unclear. It has been medically proven that treating OSA can significantly lower blood pressure. Complications The most prevalent complication for patients who suffer from OSA is a diminished quality of life due to chronic sleep deprivation and previous described symptoms. Coronary artery disease, cerebral vascular accidents (strokes), and congestive heart failure are being evaluated to define the exact nature of their connection to OSA. Still, it has documented that there is a relation between these complications and OSA. Obstructive sleep apnea aggravates congestive heart failure (CHF) by placing stress on the heart during sleep. Statistics show there is a high prevalence of OSA in patients with CHF. Central sleep apnea may be prominent in patients with CHF. Diagnosis The most universal method for diagnosing OSA is to have the patient undergo a sleep study. The technical name for the procedure is nocturnal polysomnograph. The first priority with any procedure is patient safety. A thorough analysis of the information gathered prior to beginning the test will give the technician an opportunity to determine the reason for testing, to verify all necessary monitoring parameters, and to determine the possible need for ancillary equipment. The technician must be aware of any precautions or special patient needs during testing. An understanding and knowledge of the signs, symptoms, and findings of a variety of sleep disorders and sleep related breathing disorders is necessary to ensure patient safety and recording requirements during polysomnography testing. Various medical problems will be encountered with the patients undergoing a sleep study. Examples of these complications include: asthma, COPD, cardiac arrhythmias, carbon dioxide narcosis, and abnormal breathing. Numerous cardiac arrhythmias may occur and they include: asystole, ventricular tachycardia or fibrillation, bigeminy, trigeminy, multi-focal PVC's, heart blocks, atrial fibrillation, bradycardia, or tachycardia associated with sleep apnea. Some of these cardiac arrhythmias are life threatening and require technician intervention. Others are relatively benign and require only that the technician watch the patient closely. Thus, all polysomnography technicians will be required to be certified in Basic Life Support. The polysomnography testing will include recording of multiple physiological parameters in sleep. These parameters usually include EEG, EKG, eye movements, respiration, muscle tone, body position, body movements, and oxygen saturation. The electroencephalogram (EEG) measures brain electrical activity. The brain activity during different stages of sleep as compared to wake is distinctly different. The electrooculogram (EOG) monitors eye movements and allows the examiner to determine REM sleep and wake. The electromyogram (EMG) monitors muscle tone, and the EMG helps to differentiate REM sleep from wake because the muscles relax to a state of paralysis in REM sleep. The electrocardiogram (EKG or ECG) monitors heart rate and graphs the electrical signal as it is conducted through the heart. Respiratory effort belts are placed around the patient's chest and abdomen to detect and record the rising and falling movements associated with respiration. A pulse oximeter is attached to the finger to record oxygen saturation levels in the blood. Leg leads or electrodes are attached to record leg movements which may determine the patient has periodic limb movement disorder. A thermistor is used to monitor breathing. Obstructive sleep apnea is diagnosed if the patient has an apnea/hypopnea index (AHI) of 5 or greater an hour. The respiratory disturbance index (RDI) is sometimes used in place of the AHI and essentially refers to the same data. However, in the recent past, RDI was an index that also included the number of respiratory effort related arousals(RERAS) per hour in addition to the hypopneas and apneas. Some sleep centers may still do this, but most are currently not scoring the RERAS due to non-coverage of insurance. An RDI from five to ten per hour would be a positive finding for OSA as well. Clinically speaking, an obstructive apnea is defined as a complete cessation of airflow for 10 seconds or more with persistent respiratory effort. An obstructive hypopnea is defined as a partial reduction in airflow of at least 30 percent followed by a drop in SaO2 of at least 3% or an arousal from sleep, or an alternate definition of 50 percent reduction in nasal pressure airflow signal followed by at least a 4% drop in SaO2(desaturation). Medicare still requires the 4% drop in SaO2 for their patients, but the first definition is recommended by the American Academy of Sleep currently. SaO2 refers to the amount of Oxygen in the blood being carried by the red blood cells. This will always drop when a patient stops breathing. The many physiological measurements taken usually enable the physician to diagnose or reasonably exclude OSA. Certain scenarios may prove a more difficult diagnosis. Such as, a patient who may have mild OSA at home, or only after using certain medications or alcohol but does not experience any episodes during the sleep study. Thus, the sleep study results must be interpreted with the entire clinical picture in mind. Another condition, called upper airway resistance syndrome, cannot be seen on polysomnography. This syndrome is characterized by repetitive arousals from sleep that probably result from increasing respiratory effort during narrowing of the upper airway. These patients suffer the same sleep disruption and deprivation as other sleep apnea patients. In such cases, the only alarming indicator that is recorded is the recurrent arousals. Ultimately, patients suffering from upper airway resistance syndrome may not test positive for OSA with standard polysomnography testing. Treatment A patient suffering from OSA has several treatment options that include: weight reduction, positional therapy, positive pressure therapy, surgical options, and oral appliances. Significant weight loss has shown tremendous improvement and possible elimination of OSA. The amount of weight a patient needs to lose to achieve noticeable benefits varies. However, one will not need to achieve "ideal body weight" to see improvement. Positional therapy is a method of treatment used to treat patients whose OSA is related to body positioning during sleep. A OSA patient who sleeps flat on their back, or in supine position, will experience worse symptoms in general. This type of therapy has its limits, but some patients have experienced benefits. Some of the strategic methods include: a sock filled with tennis balls is sewn into their shirt to make it uncomfortable for the sleeper to lie on their back, and positional pillows to assist in sleeping on their side. Positive pressure therapy is one of the most if not the best methods of treatment for obstructive sleep apnea. There are three different types of devices: continuous positive airway pressure (CPAP), autotitration, and bi-level positive airway pressure. CPAP, the more common of the three therapy modes, is the most prescribed method of treatment for OSA. A facial or nasal mask is worn by the patient while they sleep. The mask is connected to the CPAP machine with tubing. Positive air pressure is delivered from the machine to the mask and continues to the upper airways establishing a "pneumatic splint" that prevents collapsing of the airways. Autotitration devices are designed to provide the minimum necessary pressure at any given time and change that pressure as the needs of the patient change. Bi-level positive airway pressure differs from the CPAP by reducing the level of positive pressure upon exhalation. Oral appliances are another avenue a patient can try as a therapeutic device. Generally, there are two categories, mandibular advance devices and tongue-retaining devices. Mandibular advance devices are similar to athletic mouth guards. They differ in the mold for the lower teeth is advanced further forward than the mold for the upper teeth. This will cause the jawbone to remain forward and prevent the collapse of the airway. It is effective in mild cases of OSA, particularly if the patient's OSA is positional. Tongue-retaining devices also resemble an athletic mouth guard. It acts as a suction cup and is placed between the upper and lower teeth. The tongue is positioned forward and obstructions caused by the tongue should be minimized. First described in 1981, CPAP therapy has become the most preferred treatment for patients with OSA. CPAP flow generators or machines maintain a constant, controllable pressure to prevent blockage of the upper airway. The positive air pressure travels through the nostrils by a nasal or facial mask. This airflow holds the soft tissue of the uvula, palate, and pharyngeal tissue in the upper airway in position so the airway remains open while the patient progresses into deeper stages of sleep and REM sleep. The CPAP device can be described as a "pneumatic splint." Variations to the CPAP machine are available to help with compliance. BPAP, Bi-PAP or bi-level positive airway pressure is another option for treatment. Those three are one and the same. They are just different ways that you might see this term. The AASM guidelines uses "BPAP" in their protocol publications. BiPAP is a trademarked term by a company named Respironics. Anyway, most of the problems patients experience with CPAP are caused by having to exhale against a high airway pressure. Because the air pressure required to prevent respiratory obstruction is typically less on expiration than on inspiration, Bi-PAP machines are designed to detect when the patient is inhaling and exhaling and to reduce the pressure to a preset level on exhalation. Patients with severe OSA may require maximum levels of pressure to eliminate the obstructive apnea. Bi-PAP may be the chosen method of treatment with this scenario, and Bi-PAP may be used when the patient has more than one respiratory disorder. Regardless of the mechanism used, the goal of the technician should always be to titrate the machine to the lowest possible pressure to eradicate the sleep apnea. Each individual patient with OSA will present a different scenario for the attending polysomnography technician. The sleep study with positive airway pressure titration will need to achieve the optimal pressure for the specific patient. The sleep study with CPAP/Bi-PAP will show not only when the respiratory events have ceased, but also when the arousals from the respiratory events occur. The ultimate goal for the technician during a titration process is to achieve the minimal optimum pressure to eliminate all obstructive events and snoring during all stages of sleep and all body positions while sleeping. Compliance Mask fitting is an essential element of a patient's success with positive airway pressure therapy since it affects compliance and effectiveness of treatment. The higher pressures used during CPAP/Bi-PAP therapy can cause a significant air leak with the mask. The leak can also emerge from the patient's mouth if they are using a mask that doesn't cover the mouth. This can startle a new CPAP user. The leak can wake the patient from sleep. Thus, the mask stability is tested with higher pressures. Higher pressures may also require tighter head gear to maintain an adequate seal. Adversely, this will contribute to the discomfort from wearing the mask. When selecting a CPAP mask the following factors should be considered: comfort quality of air seal convenience quietness air venting CPAP/Bi-PAP machines are also available with humidity. Nasal congestion and dryness are very common complaints with positive airway pressure therapy. Humidification can also be heated. These features have proven to help with patient compliance. Ultimately, the biggest obstacle with compliance is getting patients to comply with their own treatment. Without the patient's willingness to use it, CPAP will not provide effective therapy. Studies have shown that CPAP compliance varies from approximately 65% to 85%. The bottom line for the patient to experience the benefits and relief of complaints is they must use the machine on a nightly basis. Information regarding the degree to which a patient is compliant with CPAP is essential for assessment of therapeutic impact. If problems persist after implementation of CPAP, the causes could include: delivery of insufficient pressure to maintain upper airway patency during sleep misdiagnosis of the etiology of the individual's symptoms failure to use the device for a sufficient duration on a regular basis Possible Side Effects The principal side effects with CPAP/Bi-PAP use include: contact dermatitis nasal congestion rhinorrhea dry eyes mouth leaks nose bleeds (rare) tympanic membrane rupture (very rare) chest pain aerophagia (the excessive swallowing of air, often resulting in belching) pneumoencephalitis (air in the brain, which is extremely rare, reported in a patient with a chronic cerebral spinal fluid leak) claustrophobia smothering sensation Actions can be taken to counteract some of the side effects. Nasal congestion or dryness often can be reduced or eliminated with nasal sprays or humidification. Rhinorrhea can be eliminated with nasal steroid sprays or ipratropium bromide nasal sprays. Epistaxis (nose bleeds) is usually due to dry mucosa and can be treated with humidification. Skin irritation can be combated with different mask materials. Dry eyes are usually caused by mask leaks and can be eliminated by changing to a better fitting mask. Attempts to reduce claustrophobic complaints have resulted in the patient using nasal pillows or prongs as opposed to the nasal or facial mask. Mouth leaks can be reduced or eliminated by using a chin strap. A small number of patients complain of chest pain or discomfort with CPAP use. This can probably be attributed to increased end-expiratory pressure and the consequent elevation of resting lung volume, which stretches wall muscles and cartilaginous structures. The resulting sensation that is created is due to chest wall pressure that persists through the hours of wakefulness. Any complaints of chest pain should always be taken seriously. However, if the complaint by the patient on CPAP proves to be nondiagnostic, Bi-PAP therapy may prove to be an option since expiratory pressure can be reduced. Sometimes it pays for the technologist to develop some psychological skills in order to convince the patient to use the device. I have found that a patient who doesn't seem to believe they need CPAP tends to change her/his mind when they see the data that shows him not breathing. Keep in mind that your patients can't see themselves sleep. They may also not be aware of all the possible complications of OSA down the road. Another area of concern for OSA patients using CPAP/BPAP devices is the negative effects on arterial blood gases and oxyhemoglobin saturation. Studies have reported severe oxyhemoglobin desaturation during nasal CPAP therapy in a hypercapnic (elevated levels of carbon dioxide in the blood) sleep apnea patients. Studies have also shown significant oxygen desaturations with CPAP administration with supplemental oxygen. The exact cause has yet to be determined. This occurrence may be due to the following factors: worsening hypoventilation related to the added mechanical impedance to ventilation associated with exhalation against increased pressure increased dead-space ventilation a decrease in venous return and cardiac output due to increased intrathoracic pressure during CPAP administration in patients with impaired right or left ventricular function and inadequate filling pressure One more possibility is when the optimal pressure setting has not been reached yet. Therefore, a ten second apnea may have turned into a 90 second hypopnea. The patient may not arouse from sleep as quickly to get a breath since the airway is not completely closing off as it was without therapy. This should improve once enough pressure is added, however. Despite the above scenarios and problematic experiences, CPAP/Bi-PAP administration has been reported to improve awake arterial blood gases in OSA patients with hypercapnia and cor pulmonale. Traditional and Evolving Methods of Initiating CPAP/BPAP Different methods have been established for implementation of positive airway pressure therapy. Traditionally, patients have undergone a technician attended PSG-monitored trial of CPAP. Split-night studies are now conducted more frequently. Home CPAP trials is another avenue that is being investigated. Use of predictive formulas to estimate or establish optimal level for CPAP therapy has been investigated. Each scenario has advantages and disadvantages. CPAP Therapy of Nonapneic SDB There are numerous documentations of patients with congestive heart failure (CHF) suffering from sleep-disordered breathing (SDB). Most often the respiratory events will be central in nature (no effort, brain not sending signal to breathe) resembling Cheyne-Stokes respiration (CSR). CSR is defined as a breathing pattern characterized by regular "crescendo-decrescendo" fluctuations in respiratory rate and tidal volume. The presence of SDB was associated with sleep-fragmentation and increased nocturnal hypoxemia. The conclusions from the findings are stated below: There is a high prevalence of daytime sleepiness in patients with CSR in conjunction with CHF. Patients with CHF who also have CSR have a higher mortality than patients who have CHF without CSR. CSR, AHI (apnea/hypopnea index), and the frequency of arousals were correlated with mortality. Furthermore, research has found CPAP has been noteworthy and effective on breathing in patients with CHF and CSR. The results of several studies showed an increase in cardiac output and stroke volume and a reduction in left ventricular wall tension during application of CPAP. The improvements seen in CHF patients with CSR regarding cardiac function during sleep is believed to carry over to wakefulness. Possible factors contributing to the improvements seen include: sleep-related reduction of left ventricular transmural pressure improved oxygenation during sleep reduced sympathetic nervous system activation during sleep CPAP machines have become a lot more sophisticated during the past decade. One of these updates is the ability of some machines to generate an algorithm that can predict the next breath of these central sleep apnea patients. These machines will adjust how much air is delivered during each breath based on this prediction. This has the effect of making the breathing pattern more consistent. You may see this denoted as Auto-SV, or servo-ventilation. We will talk about this more later, but I just wanted you to be aware that there are more sophisticated machines for patients with CHF and irregular breathing patterns that are not due to obstructions. Effects of Altitude Changes and Alcohol Consumption Older CPAP machines will not adjust to changes in altitude. As altitude increases, the older CPAP devices will deliver progressively lower than prescribed pressure. The more modern devices will detect altitude changes and make the appropriate adjustments. The polysomnography technician would benefit from information regarding a patient relocating from a high altitude location to lower altitude or vice versa if there are complaints of the CPAP therapy being nontherapeutic. Alcohol consumption can present further complications for a patient suffering from OSA. Alcohol suppresses the arousal response. The patient may experience a greater frequency and duration of apneas and hypopneas and increased snoring. Excessive alcohol use also increases sleep fragmentation. Taking a sedative can cause these effects to be imitated or exacerbated. Still, there are reports stating moderate alcohol consumption did not significantly alter the level of pressure required to eliminate the obstructive events. Nonetheless, OSA patients should avoid alcohol
Updated 68d ago
flashcards Flashcards (4)
1. Molecular Forms and Their Functions in Photosynthesis Photosynthesis involves various molecular structures, each contributing to different stages of the process. The key molecular components involved in photosynthesis include: Chlorophyll: A pigment responsible for absorbing light energy, primarily in the blue and red wavelengths, and reflecting green light. Water (H₂O): Used in the light reactions, where it is split to provide electrons and protons (hydrogen ions). Carbon dioxide (CO₂): The source of carbon for the synthesis of glucose, incorporated in the Calvin cycle. ATP (Adenosine Triphosphate): The energy currency produced in the light reactions and used in the Calvin cycle. NADPH (Nicotinamide adenine dinucleotide phosphate): An electron carrier produced in the light reactions, used in the Calvin cycle for the reduction of CO₂. These molecules work in tandem to capture light energy and convert it into chemical energy, which is stored in the bonds of glucose. 2. Roles of Molecular Structures in Photosynthesis The key molecular structures in photosynthesis—chlorophyll, ATP, NADPH, and enzymes—are crucial for energy capture, conversion, and storage in plants. Chlorophyll absorbs light energy and drives the conversion of water into oxygen and electrons during the light reactions. ATP and NADPH are produced in these reactions and are then used in the Calvin cycle to synthesize sugars from carbon dioxide. 3. What is Photosynthesis? Why is it Important? Definition: Photosynthesis is the process by which plants, algae, and some bacteria convert light energy, carbon dioxide, and water into glucose (a form of sugar) and oxygen, using chlorophyll as the primary pigment. Importance: Photosynthesis is fundamental for life on Earth because it: Provides the oxygen necessary for cellular respiration in most organisms. Serves as the foundation of the food chain, producing organic compounds (like glucose) that form the base of energy for almost all living things. Helps regulate atmospheric CO₂ levels, thereby contributing to climate balance. 4. Theoretical Origins of the Chloroplast Chloroplasts are believed to have evolved from cyanobacteria (blue-green algae) through a process called endosymbiosis. This theory suggests that an ancient eukaryotic cell engulfed a photosynthetic prokaryote (cyanobacterium), which then became a permanent part of the host cell. Over time, the engulfed cyanobacterium evolved into the modern chloroplast, retaining its own DNA and two membranes, which are characteristic of bacteria. 5. Where Does Photosynthesis Take Place? In What Type of Cells? Location: Photosynthesis primarily takes place in the chloroplasts of plant cells. Cell Type: Photosynthetic cells are typically found in mesophyll cells in the leaves of plants. These cells contain a high concentration of chloroplasts, which are essential for capturing light energy. 6. Structures of the Chloroplast Stroma: The fluid-filled interior of the chloroplast, which contains enzymes involved in the Calvin cycle (dark reactions). Granum: Stacks of thylakoids, which are the sites of the light reactions. Thylakoid: Membrane-bound structures within the chloroplast that contain chlorophyll and other pigments necessary for light absorption. Thylakoid Space/Lumen: The interior space within each thylakoid where protons (H⁺) accumulate during the light reactions. Inner and Outer Membranes: The double membrane structure that surrounds the chloroplast, with the outer membrane being more permeable than the inner membrane. 7. What is Chlorophyll? Where is it Found in the Chloroplast? Chlorophyll: Chlorophyll is the green pigment in plants that absorbs light energy necessary for photosynthesis. There are two main types: chlorophyll a (primary pigment) and chlorophyll b (which assists chlorophyll a by capturing additional light wavelengths). Location in the Chloroplast: Chlorophyll is embedded in the thylakoid membranes of the chloroplasts. The thylakoids are where light absorption and energy conversion occur. 8. Chemical Reaction of Photosynthesis The general chemical equation for photosynthesis is: 6CO2+6H2O+light energy→C6H12O6+6O26CO_2 + 6H_2O + \text{light energy} \rightarrow C_6H_{12}O_6 + 6O_26CO2​+6H2​O+light energy→C6​H12​O6​+6O2​ Inputs: Carbon dioxide (CO₂): From the air. Water (H₂O): From the soil. Light energy: Captured by chlorophyll from sunlight. Outputs: Glucose (C₆H₁₂O₆): A sugar that stores chemical energy. Oxygen (O₂): A byproduct, released into the atmosphere. 9. Light Reactions of Photosynthesis Location: The light reactions take place in the thylakoid membranes. Inputs: Light energy (photons) Water (H₂O) Outputs: ATP (energy carrier) NADPH (electron carrier) Oxygen (O₂) as a byproduct In the light reactions, light energy is absorbed by chlorophyll, which excites electrons. These electrons are passed through the electron transport chain (ETC), leading to the production of ATP and NADPH. Water is split to replace the excited electrons, producing oxygen as a byproduct. 10. Calvin Cycle (Dark Reactions) Location: The Calvin cycle occurs in the stroma of the chloroplast. Inputs: CO₂ (from the atmosphere) ATP (from the light reactions) NADPH (from the light reactions) Outputs: Glucose (C₆H₁₂O₆) or other sugars that can be used for energy or stored as starch. In the Calvin cycle, carbon dioxide is fixed into an organic molecule through a series of reactions involving the enzyme RuBisCO. ATP and NADPH are used to reduce this organic molecule into sugars. 11. The Original Source of Electrons in Photosynthesis The original source of electrons in photosynthesis is water (H₂O). During the light reactions, water molecules are split by the enzyme photosystem II, releasing electrons, protons, and oxygen. The electrons are passed through the electron transport chain to ultimately reduce NADP⁺ to NADPH. 12. Difference Between Light Reactions and Calvin Cycle Light Reactions: Energy Source: Light energy from the sun. Major Outputs: ATP, NADPH, and O₂. Location: Thylakoid membranes. Calvin Cycle (Dark Reactions): Energy Source: ATP and NADPH produced during the light reactions. Major Output: Glucose (or other carbohydrates). Location: Stroma. The Calvin cycle is often called the "dark reactions" because it does not require light directly; instead, it uses the ATP and NADPH generated in the light reactions to power the fixation of carbon and the synthesis of sugars. 13. Carbon Fixation in Photosynthesis Carbon fixation refers to the process by which carbon dioxide (CO₂) from the atmosphere is incorporated into an organic molecule. In photosynthesis, this occurs during the Calvin cycle, where CO₂ is attached to a 5-carbon molecule called ribulose bisphosphate (RuBP), catalyzed by the enzyme RuBisCO. This process creates a 6-carbon intermediate that is quickly split into two molecules of 3-phosphoglycerate (3-PGA), which are then converted into sugars through a series of reactions. Summary Photosynthesis is essential for life, providing oxygen and forming the basis of the food chain. It occurs in the chloroplasts within plant cells, primarily in the mesophyll cells of leaves. Light reactions capture solar energy and convert it into ATP and NADPH, while releasing O₂. The Calvin cycle uses ATP and NADPH to fix CO₂ and synthesize glucose. Chlorophyll, water, ATP, and NADPH play key roles in harnessing and storing energy during photosynthesis. 1. Chloroplast and Chlorophyll – Differentiate Chloroplast: Definition: Organelles in plant and algal cells where photosynthesis occurs. They contain the necessary machinery for converting light energy into chemical energy (glucose). Structure: Chloroplasts have an outer membrane, an inner membrane, a stroma (fluid-filled space), and thylakoids (membrane-bound structures where light reactions take place). Function: Sites for both the light-dependent reactions (in thylakoid membranes) and the Calvin cycle (in the stroma). Chlorophyll: Definition: A green pigment found in the thylakoid membranes of chloroplasts that absorbs light for photosynthesis. Function: Absorbs light, primarily in the red (~680 nm) and blue (~450 nm) regions of the spectrum, and reflects green light (~500-550 nm), which is why plants appear green. 2. Photon and Wavelength – Define Photon: Definition: A particle of light or electromagnetic radiation. Photons carry energy and are absorbed by chlorophyll during photosynthesis. The energy of a photon is inversely proportional to its wavelength: shorter wavelengths carry more energy. Wavelength: Definition: The distance between successive crests of a wave, typically measured in nanometers (nm) for light. Different wavelengths correspond to different colors of light in the visible spectrum. 3. Wavelengths of Certain Colors of Light ~400 nm: Violet ~500 nm: Green (around this wavelength, light is least absorbed by chlorophyll, so it is reflected, contributing to the green color of leaves). ~550 nm: Yellow-Green ~600 nm: Orange ~700 nm: Red (longer wavelengths like red are absorbed by chlorophyll but used less efficiently for photosynthesis compared to blue light). 4. The 3 Different Pigments in Photosynthesis There are three main types of pigments involved in photosynthesis: Chlorophyll a: Characterization: The primary pigment involved in photosynthesis. It absorbs light mostly in the red and blue wavelengths (~430-450 nm and ~640-680 nm). Function: Directly involved in the light reactions, where it absorbs photons and starts the process of electron transport. Chlorophyll b: Characterization: An accessory pigment that absorbs light in the blue and red-orange regions (~460-500 nm and ~640-660 nm). Function: Helps chlorophyll a by expanding the absorption spectrum and capturing more light energy. Carotenoids (e.g., Beta-carotene): Characterization: Accessory pigments that absorb light in the blue and blue-green wavelengths (~450-480 nm) and appear yellow, orange, or red. Function: Protects chlorophyll by absorbing excess light energy (photoprotection) and transferring energy to chlorophyll. 5. What Wavelengths and Colors are Absorbed and Used in Photosynthesis? Absorbed: Chlorophyll absorbs primarily in the blue (around 430-450 nm) and red (around 640-680 nm) regions of the light spectrum. Why Green?: Chlorophyll reflects and transmits green light (~500-570 nm), which is why leaves appear green to us. The green light is not absorbed efficiently by chlorophyll and is thus reflected, giving leaves their characteristic color. 6. Photosystem, Light-harvesting Complex, Reaction Center, Primary Electron Acceptor – Relate and Explain Photosystem: Definition: A protein-pigment complex in the thylakoid membrane that absorbs light energy and uses it to initiate the process of photosynthesis. Light-harvesting Complex (LHC): Definition: A group of pigments (such as chlorophyll a, chlorophyll b, and carotenoids) that surround the reaction center in the photosystem. They absorb light and transfer energy to the reaction center. Function: Captures light energy and funnels it to the reaction center. Reaction Center: Definition: The part of the photosystem where the energy from light is converted into chemical energy. It contains a pair of chlorophyll a molecules that absorb energy and release excited electrons. Primary Electron Acceptor: Definition: A molecule that accepts the excited electrons from the reaction center, starting the electron transport chain in the light reactions. It is the first step in converting light energy into chemical energy. These components work together in the light reactions: Light energy is absorbed by the light-harvesting complex. This energy is transferred to the reaction center. The reaction center chlorophyll molecules become excited, and an electron is transferred to the primary electron acceptor. The electron is then passed through the electron transport chain, where it eventually helps generate ATP and NADPH. 7. Photosystem II and Photosystem I – Compare and Contrast Photosystem II (PSII): Function: Splits water molecules (photolysis) to release oxygen, protons (H⁺), and electrons. The electrons from water are passed through the electron transport chain to Photosystem I. Key Feature: It is the first photosystem in the light reactions and operates at a wavelength of around 680 nm. Photosystem I (PSI): Function: Absorbs light energy and re-excites electrons, which are used to reduce NADP⁺ to NADPH. Key Feature: Operates at a wavelength of around 700 nm, slightly higher than PSII. Similarities: Both are involved in the light-dependent reactions and contain reaction centers with chlorophyll a. Differences: PSII begins the process by splitting water and producing oxygen. PSI primarily produces NADPH from the excited electrons it receives from PSII. 8. Linear Electron Flow – Process Description Electron Sourcing: The process begins when light excites chlorophyll molecules in Photosystem II. This causes water to split, releasing electrons, protons (H⁺), and O₂. The electrons are passed through the electron transport chain (ETC) to Photosystem I. Energy-Rich Molecules: As electrons travel through the ETC, they provide energy to pump protons into the thylakoid lumen, creating a proton gradient. This gradient is used by ATP synthase to generate ATP. Meanwhile, the electrons in PSI are re-excited by light and used to reduce NADP⁺ to NADPH. Outcome: The process generates both ATP and NADPH, which are used in the Calvin cycle for the synthesis of sugars. 9. Linear vs. Cyclical Electron Flow Linear Electron Flow: Process: Electrons flow from Photosystem II to Photosystem I, ultimately producing both ATP and NADPH. Generates: ATP and NADPH. Cyclical Electron Flow: Process: Electrons from PSI are cycled back through the electron transport chain, without reducing NADP⁺. Instead, they return to PSI to continue the flow of electrons. Generates: More ATP, but no NADPH or oxygen. Difference: Cyclical flow is used when the cell needs more ATP than NADPH, such as in some parts of the Calvin cycle. 10. Cellular Respiration vs. Photosynthesis Similarities: Both involve energy conversion processes. Both produce energy carriers: ATP in both processes, and NADH in respiration and NADPH in photosynthesis. Both processes involve electron transport chains. Differences: Photosynthesis converts light energy into chemical energy (glucose), occurring in chloroplasts. Cellular respiration breaks down glucose to release energy (ATP), occurring in mitochondria. Photosynthesis requires light, whereas cellular respiration does not. The products of photosynthesis (glucose and oxygen) are used as inputs in cellular respiration (glucose and oxygen), while the products of cellular respiration (CO₂ and water) are inputs for photosynthesis. 11. The Calvin Cycle – Major Inputs, Processes, and Outputs Inputs: CO₂ from the atmosphere (fixed into an organic molecule). ATP and NADPH from the light reactions. Major Process of Energy Usage: Carbon Fixation: CO₂ is attached to RuBP (ribulose bisphosphate) by the enzyme RuBisCO. Reduction: ATP and NADPH are used to convert the fixed carbon into a 3-carbon sugar (G3P). Regeneration: Some G3P molecules are used to regenerate RuBP, enabling the cycle to continue. Major Outputs: Glucose or other carbohydrates, which store chemical energy for the plant. 12. Importance of the Molecule RuBisCO (Ribulose Bisphosphate Carboxylase/Oxygenase) Definition: RuBisCO is the enzyme that catalyzes the carbon fixation step in the Calvin cycle, attaching CO₂ to RuBP. Importance: It is the most abundant enzyme on Earth and is crucial for producing the organic molecules necessary for plant growth and, by extension, all life on Earth. Without RuBisCO, plants would not be able to synthesize glucose from CO₂.
Updated 168d ago
flashcards Flashcards (5)
Mossbawn Sunlight
Updated 333d ago
flashcards Flashcards (7)
sunlight - Heaney
Updated 336d ago
flashcards Flashcards (7)
sunlight
Updated 357d ago
flashcards Flashcards (21)
Heaney - sunlight
Updated 463d ago
flashcards Flashcards (13)
POLICE PHOTOGRAPHY A. DEFINITION OF TERMS: 1. Photography = Derived from the Greek word “Phos” or “Photos” which means “light” and “Grapho” means “Writing” or “Graphia” meaning “to Draw”. Sir John F. W. Herschel coined the word photography when he first wrote a letter to Henry Fox Talbot. = Is the art and science of reproducing image by means of light through some sensitized material with the aid of a camera, Lens and its accessories and the chemical process required in order to produced a photograph. 2. Forensic = Derived from the Latin word “Forum” which means “a market place” where people gathered for public discussion. = When used in conjunction with other science it connotes a relationship to the administration of justice. It is sometimes used interchangeably with the word legal. 3. Police Photography = Is the application of the principles of photography is relation to the police work and in the administration of justice. 4. Photograph = Is the mechanical and chemical result of Photography. Picture and photograph are not the same for a picture is a generic term is refers to all kinds of formed image while a photograph is an image that can only be a product of photography. B. USES OF PHOTOGRAPHY 1. Personal Identification = Personal Identification is considered to be the first application of photography is police work. Alphonse Bertillion was the first police who utilized photography in police work as a supplementary identification in his Anthropometry system. 2. For Communication = Photograph is considered to be one of the most universal methods of communication considering that no other language can be known universally than photograph. 3. For Record Purposes = Considered to be the utmost used of photography in police work. Different Views in photographing a. General View = taking an over-all view of the scene of the crime. It shows direction and location of the crime scene. b. Medium View = Is the taking of the photograph of the scene of the crime by dividing it into section. This view will best view the nature of the crime. c. Close-up View = Is the taking of individual photograph of the evidence at the scene of the crime. It is design to show the details of the crime. d. Extreme Close-up View = Commonly designed in laboratory photographing using some magnification such as Photomacrography and photomicrography. 4. For Preservation = Crime scene and other physical evidence requires photograph for preservation purposes. Crime scene cannot be retain as is for a long period of time but through photograph the initial condition of the scene of the crime can be preserved properly. 5. For Discovering and Proving = Photography can extend human vision in discovering and proving things such as: a. The use of Magnification Photomicrography = Taking a magnified photograph of small object through attaching a camera to the ocular of a compound microscope so as to show a minute details of the physical evidence. Photomacrogaphy = Taking a magnified (enlarged) photograph of small object by attaching an extended tube lens (macro lens) to the camera. Microphotography = is the process of reducing into a small strips of film a scenario. It is first used in filmmaking. Macrophotography = used synonymously with photomacrogaphy. Telephotography = Is the process of taking photograph of a far object with the aid of a long focus and Telephoto lens. b. Used of Artificial Light such as X-ray, Ultra-violet and Infra-red rays to show something which may not be visible with the aid of human eye alone. 6. For Court Exhibits = Almost all evidence presented in court before formally be accepted requires that they satisfy the basic requirements for admissibility which is relevancy and competency. A question of relevancy is usually proved by proving the origin of the evidence and its relation to the case and this is usually supplemented by photograph of the evidence giving reference as to where it came from. Evidence presented in court once accepted became known as Exhibit. Either Exhibit 1,2,3 etc. for the defense or Exhibit A, B, C etc for the prosecution. 7. Crime Prevention = with the used of video camera (hidden camera) and other advanced photographic equipment crimes are being detected more easily and even to the extent of preventing them from initially occurring. 8. Police Training = Modern facilities are now being used as instructional material not only in police training as well as in other agencies. 9. Reproducing and Copying = With the use of photography any number of reproduction of the evidence can be made those giving unlimited opportunity for its examination and even allow other experts or person to examine the specimen without compromising the original. C. ESSENTIALS OF PHOTOGRAPHY 1. Light = is an electromagnetic energy that travels in a form of a wave with the speed of 186, 000 miles per second. 2. Camera = a light tight box designed to block unwanted or unnecessary light from reaching the sensitized material. 3. Lens = is the light gathering mechanism of the camera that collect the reflected light coming from the object to form the image. 4. Sensitized material = composed of a highly sensitized chemical compound which is capable of being transformed into an image through the action of light and with some chemical processes. ( Film and Photo Paper). 5. Chemical Process = is the process necessary for reducing silver halides into a form so as a latent image and a positive image be made resulting to what we called Photograph. D. THEORIES OF LIGHT 1. The WAVE Theory (Huygens) = It is the theory that was transcribed from the motion of the water that if we observe a piece of log floating in the ocean and with the force of the air would naturally will make the log move up and down. 2. Corpuscular theory (Newton) = this later opposed the wave theory stating that light has its effect by the motion of very small particles such as electrons. 3. Modified Wave theory (Maxwell and hertz) = Based on electromagnetics. All these theories are still considered to be of little lacking that law enforcement need not to be very focus on this but rather go along with the accepted conclusion that light is a form of energy, which is electromagnetic in form. E. LIGHT: ITS NATURE, CHARACTERISTICS, SOURCES AND CLASSIFICATION Light is defined as an electromagnetic energy with the speed of 186,00 miles per second. Its wave travel is said to be characterized in certain extent based on velocity, wavelength and frequency of the number of vibration of the wave per second. Light wavelength is the distance measured between two (2) successive crest or through of wave and it is expressed in either Millimicron (nanometer) or Angstrom. Millimicron is the units of light wavelength which is equivalent to one-millionth part of a millimeter which the Angstrom is relatively smaller for it has an equivalent measurement of ten (10) millionth part of a millimeter. Once light hits a certain medium, its action can be characterized as either: Reflected, Transmitted or Absorbed (RAT). Reflected once the light hits a mirror and it bounce back. Transmitted when the light hits a transparent glass which would allow the light to pass through its medium and Absorbed when the light hits a dark colored object and prevents it from either bouncing or passing through. Isaac Newton in 1666 proved that the light which men see as white light is actually a mixture of all colors of the spectrum. This is produced when we allow light to hit a glass prism (Sharp Edge of the Glass). A rainbow array will then be shown with colors red, orange, yellow, green, blue and violet colors (from top to bottom). The visible light is also said of have a wavelength of between 400-700 millimicron or nanometer. 1. Types of Light Lights can largely be classified into visible and invisible light. a. Visible Light = Is the type of light that produces different sensation when reach the human eye. It is the type of light, which is capable of exciting the retina of the human eye. b. Invisible Light = lights in which their wavelength are either too short or too long to excite the retina of the human eye i.e. X-ray, Ultrat-violet and Infra-red lights. 2. Photographic Rays a. X-ray =Light with the wavelength between .01 to 30 millimicrons. It is produced by passing an electric current through a special type of vacuum tube. It was incidentally discovered by Conrad Welhelm Roentgen. This type of light works in the principle of shadow photography. b. Ultra-violet ray (Before the violet) = Radiation having a wavelength of 30 to 400 nanometers designed to photograph fingerprints in multi colored background, documents that are altered, decipherment of erase writing and developing invisible writing. It is commercially known as “black Light”. c. Visible Light = It refers to the type of radiation having a wavelength of 400 to 700 millimicrons designed for ordinary photographing purposes. d. Infra-red (Beyond the Red) = Considered as the photographic rays with the longest wavelength ranging from 700 to 1000 millimicrons. It is designed to take photograph of over-written documents, obliterated writing, and charred documents or for black out photography. It is sometimes referred to as heat rays). 3. Light Source A. Natural Light= are those light which come to existence without the intervention of man e.i. Sunlight, moonlight and starlight. 1. Bright Sunlight = object in an open space casts a deep and uniform shadow and the object appears glossy. 2. Hazy Sunlight = object in an open space casts a transparent or bluish shadow. This is due to thin clouds that cover the sun. 3. Dull Sunlight = object in an open space cast no shadow due to thick clouds covering the sun. Daylight may still be classified as: open space bright sunlight, under shade bright sunlight, hazy sunlight, cloudy sunlight and cloudy dull sunlight. These conditions and their colors affect the appearance of the object being photograph. Factors such as atmospheric vapor, atmospheric dust and quality of the reflected light coming and not coming from the source should likewise be considered. B. Artificial Light = otherwise known as man-made light e.g. fluorescent bulb, incandescent bulb and photoflood lamp. 1. Continuous radiation Photoflood lamp= is likewise known as Reflectorized light or Spot light. It is a light with a reflector at the back which focus the light to the object the common wattages of this lamp is 500 watts. Flourescent Lamp = are tube lamps in which the walls are coated with fluorescent powders with both ends is mounted with a holder that serves as the reflector. This is commonly used by everybody more than it is used in photographing. Incandescent bulb = are bulb with a wire filament connecting two wires which sustain the electrical charge that produces the light. Everybody likewise commonly uses this although it is more expensive in terms of electrical consumptions. Infra-red Lamp Ultra-violet Lamp 2. Short Duration type Flash bulb = are chemical lamps, as it generate lights by the rapid combination of metal in oxygen. The bulb can be used only once as the bulb is busted when fired electrically. There are thin filaments inside the bulb with two electrical contacts. When the current flows through the filament, it becomes incandescent and ignites the explosive primer that ignites the aluminum foil that burns, giving flash of tense light. Electronic Flash = produces light by an instantaneous electrical in charges between two electrodes in a gas filled glass bulbs. The electrical energy for the discharge is kept in capacitor or condenser. It usually ranges from 1/300 second and 1/5000 second, and because of this, subject in fast motion can be arrested or stopped in the photographs. 4. SENSITIZED MATERIAL = It refers to the film and photographic paper that basically composed of emulsion containing Silver Halides suspended in gelatin and coated on a transparent or reflective support. Parts of the Sensitized Material 1. Emulsion = is that part of the film or photographic paper which contains the silver grains which is the one sensitive to light. In a colored film this emulsion surface can be composed of three layers (Blue, Green and Red) with filters intervening. 2. Anti Halation Backing = is the one designed to hold back the light and prevents halation. 3. Base = Support the emulsion I. Types of Film A. According to Use 1. Black and White Film = usually represented by a prefix or a suffix “Pan” or “Ortho” and generally used in black and white photography. Examples are Ortholith film, Tri X-Pan and Pan X-plus. 2. Colored Film = can be divided into two: the Negative type and the reversal type of colored film. The former is usually having names ending in color while the word chrome represents the latter. e.g. Blue sensitive film, Ultra-violet film, Infra-red film, Orthochromatic film and Panchromatic film. B. According to Spectral Sensitivity Spectral sensitivity = is the responsiveness of the film emulsion to the different wavelength of the light course. 1. Blue – Sensitive film = sensitive to U.V. light and Blue Color. 2. Orthochromatic Film = Sensitive to U.V. Light up to the green. ( popular in the marker as KODALITH FILM) 3. Panchromatic film = Sensitive to U.V. Light up to red (sensitive to all colors of the visible light) 3.1. Process Panchromatic film = permit short exposures under average lighting condition and has the advantage of the grain structure. 3.2. Grain Panchromatic film 3.3. High Speed Panchromatic film designed originally for photographing object under adverse lighting condition. 4. Infra-red Film = Sensitive to all colors and to infra-red light. FILM SPEED (Emulsion Speed) This refers to the degree of sensitivity of the film to light. 1. ASA (American Standards Association) = this is expressed in arithmetic value system. The bigger the number the more sensitive the film is. ASA 10, 20 , 30 , 40,50, 100, 200, 400, 800, 1000 2. DIN ( Deutche Industre Normen) = expressed in Logarithmic value system. Used in the same principle as the ASA. Din 12, 15, 18, 21, 24, 27, 30, 33 etc. 3. ISO (International Standard Organization) expressed as combination of ASA and DIN rating. II. Photographic Paper It is that sensitized material that will record the visible image in the final development and become the photograph. Types of Photographic Papers A. According to Emulsion Used (Silver halides content) 1. Silver Chloride paper = used for contact printing, the size of the positive print is the same as the size of the negative used. Sensitivity to light is low and give blue-black tones when properly developed. 2. Silver Bromide paper = used projection, printing and enlarging process. This is one of the most ideal photo paper used for police photography. Will give a black tone when properly developed. 3. Silver Chlorobromide paper = used both for projection and contact printing. Slow emulsion. 4. Variable contract paper = combines the contrast range in one paper it uses a special chlorobromide emulsion that produces varying contrast responses upon exposure to different colors of light. B. According to Physical Characteristics b.1. Weight 1. Light weight = designed for high flexibility and when paper thickness is not of consideration. Intended for purposes, which involves folding. 2. Single Weight = papers used for small prints or which are need to be mounted on solid and fine details necessary in the production. Used in ordinary photographic purposes. 3. Double weight = generally used for large prints because they stand up under rough treatment. b.2. Surface Texture a. Glossy paper =designed for fine details and brillant image formation. b. Semi-mate paper = obscure the fine details c. Rough papers = used for large prints or where breath rather than detail is necessary. b.3. Color a. White = better used in police photography. b. Cream = preferred for pictorial effect, portraits, landscape or when warmth effect is desired. c. Buff papers = prepare for tone prints C. According to Contrast (grade) 1. Velox No. 0 = used for printing extremely contrast negative or extremely exposed film. 2. Velox No. 1 = used for high contrast negative (over exposed film) 3. Velox No. 2 = used for normal exposed film 4. Velox No. 3 = used for negative with weak contrast (under exposed) 5. Velox No. 4 = used to provide sufficient contrast to compensate for very thin or weak negatives. It is useful imprinting which high contrast is desired. 6. Velox No. 5 = for flat negative that are unprintable. 5. CAMERA Is a light tight box with light gathering device and a means of blocking unwanted or unnecessary light from reaching the sensitized material. Basically, camera can produce image with its four-(4) basic parts such as light tight box, lens, and shutter, Holder of sensitized material. Essential Parts of a Camera 1. Light Tight Box – a box designed to keep light out and serve as a frame to hold other parts. 2. Lens – designed to collect or to focus the reflected light from an object to form an image on the film. 3. Shutter – designed to control the time during which the light reaches the film 4. Holder of the sensitized material – located at the opposite side of the lens designed to hold firmly the sensitized material to prevent the formation of the multiple or blurred image 5. View finder – designed to determine the field of view of the camera or the extent of the coverage of the given lens OTHER PARTS OF A CAMERA A. Viewing System Is that part of the camera which provides the means of showing to the photographer the entire scene coverage that can be recorded in the sensitized material. B. Film Advancer (film advance lever or knob) =designed to transfer the exposed film to the other side or to the take up spool and the unexposed film will be the opposite side of the lens for another exposure. C. Shutter speed = is that part of the camera which regulates the time exposure of the film thus, affecting the amount of light reaching the sensitized material. It is usually expressed in a fraction of a second. 1/1 1/2 1/4 1/8 1/15 1/30 1/60 1/125 1/250 1/500 etc. The speed number in the left is always two times powerful in terms of light gathering than that of the right number Using a fast shutter speed the photographer can stop or “freeze” the action of a person provided that necessary adjustment on the lens opening be made in order to maintain normal exposure. D. Lens Aperture = the ratio between the diameter of the whole lens in relation to the focal length of the lens. It is the light gathering power of the lens. Otherwise known as lens opening or relative aperture and it is expressed in F-number. f 2.8 f-4 f-5.6 f-8 f-11 f-16 The lower the f-number, the bigger the lens opening and the bigger the lens opening the greater the volume of air that will passed through the lends and reach the sensitized material. If the objective of a photographer is obtain the widest possible coverage of the lens in which objects are all sharp, It will be advisable to used a smaller lens opening. E. Focusing = is that mechanism of a camera designed to control the degree of sharpness of the object to be photograph. It is usually obtained by estimating the distance from the camera and that of the object that will make a sharp or clear image. Types of focusing device: 1. Range finder (Either coincidence or split image type) Coincidence otherwise known as superimposed image focusing. In this type of focusing a single object will appeared double once the object is not in focus, but moving the focusing adjustment this double image will coincide or superimposed to form a single object. Split Image focusing on the other hand will show an image in split or two parts once the object in not in focus once the two parts of the image has been united then the object is already focused 2. Ground Glass This is observed from the viewing system of the camera, once the object is not in focused the object will be viewed to be blurred and will turn sharp and clear once adjusted. 3. Scale Bed Estimating the distance of the object and adjusting the camera control based on his estimation do this. TYPES OF THE CAMERA 1. View Finder Type – it is considered as the smallest and the simplest type of camera 2. Single Lens Reflex Camera – it is a type of camera best suited for police work due to its interchangeability of the lens 3. Twin Lens Reflex Camera – A type of camera with dual lens, one for focusing and the other for forming the image. 4. View or Press type – is considered the biggest and expensive type of camera, used for movie making 5. LENS = It is the image-forming device of the lens that actually has a greater effect on the quality of the image to be formed. = a medium or system which converge or diverge light rays passing through it to form an image. = Can be a glass or transparent material, which permit light to pass through and change the direction of light. Daniel Barbaro = first to introduce the use of lens in the camera. CLASSIFICATION OF LENSES 1. According to the type of image to be produced a. Positive or Convex Lens (Converging Lens) Characterized by the fact that it is thicker at the center and thinner at the side which is capable of bending the light together and forms the image inversely. b. Negative or Concave Lens (diverging Lens) Characterized by the fact that it is thinner at the center and thicker at the side and forms the virtual image on the same side of the lens. 2. According to Degree of Corrections a. Meniscus Lens = lens that has no correction. b. Rapid Rectilinear Lens – lens corrected of distortion c. Anastigmat Lens – correcting astigmatism d. Achromatic Lens – correcting chromatic aberration e. Apochromatic Lens – correcting both astigmatism and chromatic aberration INHERRRENT LENS DEFECTS 1. Spherical Aberration= Inability of the lens to focus light passing the side of the lens producing an image that is sharp in the center and blurred at the side. 2. Coma = (Also known as lateral aberration) = Inability of the lens to focus light that travels straight or lateral, thus making it blurred while the light reaching the lens oblique is the one the is transmitted sharp. 3. Curvature of Field = the relation of the images of the different point are incorrect with respect to one another. 4. Distortion = Is a defect in shape not in sharpness. It can either be Pincushion distortion (curving inward) or Barrel (curving outward). 5. Chromatic Aberration = Inability of the lens to focus light of varying wavelength. The lens refracts rays of short wavelength more strongly than those of longer wavelength and therefore bringing blue rays to a shorter focus than the red. 6. Astigmatism= is a form of lens defects in which the horizontal and vertical axis are not equally magnified. Inability of the lens to focus both horizontal and vertical lines. 7. Chromatic Difference of Magnification 8. Flares = condition of the lens producing multiple images. LENS CHARACTERISTICS 1. Focal Length – is the distance measured from the optical center of the lens is set to focus at infinite position. As according to focal lenses may be classified as: a. Wide Angle or Short Focus = with focal length not longer than the diagonal half of the negative. Useful in taking photograph at short distance with wider area coverage. b. Normal or Medium Focus = with focal length approximately equal but not longer than twice the diagonal half of the negative. c. Long or Telephoto Lens = with focal length longer than twice the diagonal half of the negative. Best used in long distance photographing but with narrow area coverage. d. ZOOM lens = lens with variable focal length or that which can be adjusted continuously by the movement of one or more elements in the lens system. 2. Relative Aperture – the light gathering power of the lens expressed in F-number a. Depth of Field – is the distance measured from the nearest to the farthest object in apparent sharp focus when the lens b. Hyperfocal distance = Is the nearest distance at which when a lens is focused with a given particular diaphragm opening will gives the maximum depth of field. 3. Focusing = is the setting of the proper distance in order to form a sharp image. The one that controls the degree of sharpness of the object. 6. CHEMICAL PROCESS The process of making the latent image visible and permanent. a. Development (Use of either D-76, Dektol or Universal Solution) = Is the process necessary for reducing the silver halides to form the image. Elon, Hydroquenone = used as main developing agents b. Stop bath = normally composed of water with little amount of dilute acetic acid that serves as a means to prevent contamination between the developer and the acid fixer. c. Fixation = Is the process by which all unexposed silver halides are dissolved or removed from the emulsion surface and making the image more permanent. Sodium Thiosulfate (hypo) is the main fixing agent that dissolves unexposed silver halides. Other chemicals used: Acetic Acid and Boric acid = serves as neutralizer Sodium Sulfate = serves as the preservative Potassium Bromide = restrainer or hardener Sodium bicarbonate and borax powder = serves as accelerator Dodging = is the process of eliminating unwanted portion of the negative during enlarging. Cropping = is the process of omitting an object during the process of enlarging and printing. Vignetting = is the gradual fading of the image towards the side through skillful adjustment on the dodging board. Dye toning = is the process designed in changing the color tone of the photograph. Burning-In = refers to additional exposure on a desired portion of the negative used for purposes of making a balance exposure.
Updated 476d ago
flashcards Flashcards (80)
0.00
studied byStudied by 0 people