Results for "salt"

Flashcards

flashcards Flashcard (27)
studied byStudied by 0 people
6 hours ago
0.0(0)
flashcards Flashcard (34)
studied byStudied by 0 people
12 hours ago
0.0(0)
flashcards Flashcard (41)
studied byStudied by 0 people
13 hours ago
0.0(0)
flashcards Flashcard (19)
studied byStudied by 0 people
13 hours ago
0.0(0)
flashcards Flashcard (12)
studied byStudied by 0 people
1 day ago
0.0(0)
flashcards Flashcard (33)
studied byStudied by 5 people
1 day ago
0.0(0)
flashcards Flashcard (13)
studied byStudied by 0 people
2 days ago
0.0(0)
flashcards Flashcard (88)
studied byStudied by 0 people
2 days ago
0.0(0)
flashcards Flashcard (37)
studied byStudied by 0 people
2 days ago
0.0(0)
flashcards Flashcard (14)
studied byStudied by 0 people
2 days ago
0.0(0)
flashcards Flashcard (7)
studied byStudied by 0 people
2 days ago
0.0(0)
flashcards Flashcard (38)
studied byStudied by 0 people
3 days ago
0.0(0)
4. Metals and Non-metals Learning Objectives By the end of the lesson, you will be able to: ☑ distinguish between metals and non-metals ☑ describe the physical and chemical properties of metals and non-metals ☑ list the uses of some metals and non-metals MINERALS AND ORES You have learnt that all materials Here is the exact text from the image:are made up of basic substances called elements, and that elements cannot be split into simpler substances by chemical methods. There are 118 known elements. Sodium, zinc, gold, mercury, iron, lead, barium and tin (metals); and hydrogen, oxygen, carbon, sulphur, chlorine, boron, neon and radon (non-metals) are some examples. Only certain unreactive elements are found free in nature. Others occur in combined states as minerals. A mineral is a solid inorganic substance that is found in nature. A mineral deposit that can be mined and from which an element or compound can be obtained profitably is known as an ore. Elements can be broadly classified into two groups—metals and non-metals. Table 4.1 Some common ores Fig. 4.1 Some common ores a. Bauxite (aluminium) b. Malachite (copper) c. Haematite (iron) d. Galena (lead) e. Apatite (phosphorus) f. Quartz (silicon) -- --- METALS All except 20 of the known elements are metals. Most metals are reactive; they combine with other elements in nature, such as oxygen and sulphur, and occur as oxides, sulphides and carbonates. Only a few unreactive metals like gold, silver and platinum are found as free metals in the Earth's crust. Physical Properties of Metals Metals are solids at room temperature, except mercury, which is a liquid at room temperature (Fig. 4.2(a)). They are generally hard and strong, with a few exceptions such as sodium and potassium, which are soft and can be easily cut with a knife (Fig. 4.2(b)). They have a metallic lustre (shine), especially when freshly cut. They have high melting and boiling points, with a few exceptions like sodium, potassium and mercury. They are good conductors of heat and electricity. Silver and copper are the best conductors of electricity, followed by gold and aluminium. Metals are sonorous. They produce a ringing sound when struck. Most metals have high tensile strength. They can take heavy loads without breaking. They are malleable. Metals, with exceptions like sodium and potassium, can be beaten into thin sheets and foils. They are ductile. Metals, with exception like sodium and potassium, can be drawn into wires. Most metals have high density. However, sodium and potassium have low density and float on water. Fig. 4.2 Special metals a. Mercury b. Sodium --- Chemical Properties of Metals Reaction with oxygen Metals react with oxygen under different conditions to form basic oxides. These basic oxides react with water to form bases. Sodium and potassium react vigorously with oxygen at room temperature. 4Na + O_2 \rightarrow 2Na_2O To prevent this oxidation, sodium and potassium are stored under kerosene. Magnesium reacts with oxygen only when ignited. It burns with a dazzling bright flame and forms a white powder of magnesium oxide. 2Mg + O_2 \rightarrow 2MgO Copper and iron react with oxygen only when heated to a very high temperature. 2Cu + O_2 \rightarrow 2CuO --- --- Reaction with water Metals react with water to form hydroxides or oxides, along with hydrogen. Different metals react at different temperatures. Sodium, potassium, and calcium react with cold water to form hydroxides. 2Na + 2H_2O \rightarrow 2NaOH + H_2 Magnesium Reacts with steam or hot water to form magnesium oxide. Mg + H_2O \rightarrow MgO + H_2 Aluminium Forms an oxide too, but this oxide forms a protective covering over the metal and prevents further reactions. 2Al + 3H_2O \rightarrow Al_2O_3 + 3H_2 Zinc Reacts only with steam. Zn + H_2O \rightarrow ZnO + H_2 Iron Reacts with steam when heated strongly. 2Fe + 3H_2O \rightarrow Fe_3O_4 + 3H_2 Copper, gold, silver, and platinum do not react with water at all. --- Activity 4.1 Teacher Demonstration Aim: To study the reaction of metals with water. [Caution: This activity should be demonstrated by the teacher, and students should stand away from the table.] Materials required: Two 200 mL beakers Pieces of sodium and calcium Forceps Knife Litmus papers Water Method: 1. Fill each beaker with 100 mL of water. 2. Using forceps and a knife, cut a small piece of sodium. 3. Dry it on a tissue paper and drop it into one of the beakers. 4. Repeat the same procedure with calcium. 5. Test the water in both the beakers with red and blue litmus papers. Observations and Conclusions: Sodium reacts vigorously and may explode. A gas is also released. The reaction with calcium is quick, though not as vigorous as that with sodium. In both cases, the red litmus paper turns blue, showing that the solutions are bases. --- Reaction with dilute acids Most metals react with dilute acids to form their salts and liberate hydrogen gas. The reaction with reactive metals like sodium, potassium, and calcium is violent. Magnesium, aluminium, zinc, and iron do not react violently. Mg + 2HCl \rightarrow MgCl_2 + H_2 Copper, silver, gold, and platinum do not react with dilute acids. --- Reaction with bases Only some metals such as aluminium and zinc react with strong bases like sodium hydroxide to liberate hydrogen gas. Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2 --- Activity 4.2 Aim: To study the reaction of metals with dilute hydrochloric acid. Materials required: Sandpaper Six test tubes Dilute hydrochloric acid Strips of magnesium, zinc, iron, tin, lead, and copper Method: 1. Clean the metal strips with sandpaper. 2. Add dilute hydrochloric acid to the six test tubes. 3. Insert a strip of metal into each test tube. Observe if any bubbles are formed in the test tubes. If no bubbles are seen, warm them gently in a beaker of hot water. 4. Observe the speed at which gas is generated. This gives an idea of the speed of the reaction. 5. Classify the metals in order of their reactivity with dilute hydrochloric acid. [Caution: Acids are corrosive and should be handled carefully.] --- Activity 4.3 Aim: To study the reaction of metals with bases. Materials required: Small piece of zinc Beaker Sodium hydroxide Method: 1. Prepare warm sodium hydroxide or caustic soda solution. 2. Drop the piece of zinc into it. Observations and Conclusions: You will notice that zinc reacts with sodium hydroxide to liberate hydrogen gas. Observations on Metals with Dilute Acids Metals like sodium, potassium, and calcium react violently with dilute acids to liberate hydrogen gas. Magnesium, aluminium, zinc, and iron also displace hydrogen from dilute acids, but the reaction is not violent. Metals such as copper, silver, gold, and platinum do not displace hydrogen from dilute acids. --- Activity Series of Metals The activity series of metals is the arrangement of metals in decreasing order of reactivity. The series in the book shows reactivity decreasing from top to bottom. Potassium is the most reactive metal while gold is the least reactive. --- Displacement of a Metal by Other Metals A more reactive metal displaces a less reactive metal from its compounds in an aqueous solution. Some examples: Mg + CuSO_4 \rightarrow MgSO_4 + Cu Zn + FeSO_4 \rightarrow ZnSO_4 + Fe Iron can displace copper from copper sulphate solution (as shown in Activity 4.4). The solution turns green, and reddish-brown copper deposits on the iron nail. Copper cannot displace iron from iron sulphate solution, showing that copper is less reactive than iron. Cu + FeSO_4 \rightarrow \text{No reaction} Question: What do you think will happen if you place a silver spoon in copper sulphate solution? --- Activity 4.4 - Displacement Reaction Aim: To study a displacement reaction. Materials Required: Test tube Iron nail Copper sulphate solution Method: 1. Fill the test tube with copper sulphate solution (blue in colour). 2. Place the clean iron nail in the solution. Observations and Conclusions: After about an hour, the solution changes to green, and a reddish-brown deposit is formed on the iron nail. --- Corrosion of Metals Corrosion is the destruction or damage of a material due to chemical reaction. Rusting of iron happens when iron is exposed to moist air, forming a reddish-brown layer of rust. Rust is iron oxide, which eventually flakes off, damaging the object. Definition written on the page: "Slow eating of a metal’s surface due to oxidation is called corrosion of metals." --Observations on Metals with Dilute Acids Metals like sodium, potassium, and calcium react violently with dilute acids to liberate hydrogen gas. Magnesium, aluminium, zinc, and iron also displace hydrogen from dilute acids, but the reaction is not violent. Metals such as copper, silver, gold, and platinum do not displace hydrogen from dilute acids. --- Activity Series of Metals The activity series of metals is the arrangement of metals in decreasing order of reactivity. The series in the book shows reactivity decreasing from top to bottom. Potassium is the most reactive metal while gold is the least reactive. --- Displacement of a Metal by Other Metals A more reactive metal displaces a less reactive metal from its compounds in an aqueous solution. Some examples: Mg + CuSO_4 \rightarrow MgSO_4 + Cu Zn + FeSO_4 \rightarrow ZnSO_4 + Fe Iron can displace copper from copper sulphate solution (as shown in Activity 4.4). The solution turns green, and reddish-brown copper deposits on the iron nail. Copper cannot displace iron from iron sulphate solution, showing that copper is less reactive than iron. Cu + FeSO_4 \rightarrow \text{No reaction} Question: What do you think will happen if you place a silver spoon in copper sulphate solution? --- Activity 4.4 - Displacement Reaction Aim: To study a displacement reaction. Materials Required: Test tube Iron nail Copper sulphate solution Method: 1. Fill the test tube with copper sulphate solution (blue in colour). 2. Place the clean iron nail in the solution. Observations and Conclusions: After about an hour, the solution changes to green, and a reddish-brown deposit is formed on the iron nail. --- Corrosion of Metals Corrosion is the destruction or damage of a material due to chemical reaction. Rusting of iron happens when iron is exposed to moist air, forming a reddish-brown layer of rust. Rust is iron oxide, which eventually flakes off, damaging the object. Definition written on the page: "Slow eating of a metal’s surface due to oxidation is called corrosion of metals." Uses of Metals (Continued) Aluminium Used in high-voltage electric lines. Alloys like duralumin and magnalium are used in aircraft and automobile bodies. Used for making aluminium foil and cooking utensils. Copper Good conductor of electricity → Used in electrical wires, cables, motors, and transformers. Good conductor of heat → Used in the bottoms of stainless steel vessels. Zinc Used to make corrosion-resistant galvanised iron (GI) pipes and sheets. Used as an electrode in dry cells. Other Metals Gold and silver → Used in jewellery. Lead → Used in electrodes of lead storage batteries (used in automobiles and inverters). Chromium → Used for electroplating iron to give a shiny, corrosion-resistant finish. --- Looking Back (True/False Statements) 1. Gold, silver, and platinum are found in the Earth’s crust as free metals. → True 2. Most metals are solids that are soft. → False 3. Metals such as zinc and magnesium react with dilute acids to liberate oxygen. → False 4. A less reactive metal displaces a more reactive metal from its aqueous solution. → False 5. The chemical name of rust is zinc oxide. → False (Rust is Fe₂O₃.xH₂O) 6. Coating zinc objects with iron is called galvanising. → False (Galvanising is coating iron with zinc) Non-Metals Physical Properties of Non-Metals Exist as gases or solids at room temperature (except bromine, which is liquid). Not as hard as metals (except diamond, which is very hard). Low tensile strength and low density. Low melting and boiling points (except graphite). Not sonorous (do not produce a ringing sound). Not malleable or ductile (cannot be beaten into sheets or drawn into wires). Do not have lustre (except iodine and graphite). Bad conductors of heat and electricity (except graphite, and silicon under specific conditions). --Chemical Properties of Non-Metals Reaction with Water Most non-metals do not react with water. Highly reactive non-metals (e.g., phosphorus) catch fire in air, so they are stored in water. Fluorine, chlorine, and bromine react with water to form acids. Reaction with Oxygen Non-metals react with oxygen to form acidic or neutral oxides. Carbon and sulfur react with oxygen to form acidic oxides, which dissolve in water to form acids. Some oxides (e.g., CO, N₂O) are neutral and do not form acids. Examples: Carbon + Oxygen → Carbon Dioxide (CO₂) CO₂ + Water → Carbonic Acid (H₂CO₃) Sulfur + Oxygen → Sulfur Dioxide (SO₂) SO₂ + Water → Sulfurous Acid (H₂SO₃) Reaction with Acids Unlike metals, non-metals do not replace hydrogen in acids. Silicon reacts with hydrofluoric acid (HF). --Uses of Non-Metals Hydrogen Used in the manufacture of ammonia and industrial chemicals. Used in vanaspati (a cooking oil). Oxygen Used in breathing support systems in hospitals. Used with other gases in equipment to weld metals. Sulphur Used in the manufacture of sulphuric acid, sulphur dioxide gas, and other industrial chemicals. Used to make pesticides for agriculture. Used in vulcanising rubber (making it harder) and in gunpowder. Nitrogen Used in the manufacture of ammonia and nitrogenous fertilisers like ammonium nitrate and ammonium sulphate. Used as an inert gas in processed food packaging to prevent rancidity. Silicon Used in making semiconductors for microchips. Silicates (oxides of silicon) are used in making glass. Other Non-Metals Phosphorus: Used in making fertilisers (superphosphates). Chlorine: Used for disinfecting drinking water. Argon: Used in welding stainless steel and filling electric bulbs. Helium: Used in balloons for meteorological observations. Neon: Used in fluorescent lights for advertisement displays
flashcards Flashcard (10)
studied byStudied by 0 people
3 days ago
0.0(0)
flashcards Flashcard (6)
studied byStudied by 1 person
3 days ago
0.0(0)
flashcards Flashcard (7)
studied byStudied by 0 people
3 days ago
0.0(0)
flashcards Flashcard (30)
studied byStudied by 0 people
3 days ago
0.0(0)
flashcards Flashcard (21)
studied byStudied by 0 people
3 days ago
0.0(0)
flashcards Flashcard (29)
studied byStudied by 0 people
3 days ago
0.0(0)
BASIC STRUCTURE AND PROMINENT FUNCTIONS OF VERTEBRATE INTEGUMENT INTRODUCTION The integument or the outer cover of the body is commonly referred to as the skin. Together with its derivatives it makes up the integumentary system. It is continuous with the mucous membrane lining the mouth, eyelids, nostrils, rectum and the openings of the urino-genital ducts. The skin functions primarily to cover and protect the tissues lying beneath it. In other words, it forms the external protective covering of an animal. Forms interface between organism and external environment. Part that the predator sees first, and which offers the first line of defense. Abundantly supplied with sensory nerve endings, which are affected by environmental stimuli and play an important role in communication. General metabolism of the body, temperature regulation and water loss. Character of the skin and its derivatives shows variation in different regions of the body, in different individuals, in the same individual as age advances and in different groups of vertebrates. The type of environment whether aquatic or terrestrial is of importance in connection with these variations. The evolution of vertebrate integument is correlated with the transition of vertebrates from an aquatic to a terrestrial environment. Nevertheless, basic similarities exist in the integument of all vertebrates. INTEGUMENT PROPER In Annelids, Arthropods, integument consists of single layer of cells, the EPIDERMIS, together with an outer non-cellular CUTICLE, secreted by the cells. Annelids have a body covered with an external thin collagenous cuticle (never shed or molted). In Arthropods, the chitinous and rigid cuticle makes up the exoskeleton. Periodic shedding of this cuticle is termed Ecdysis. THE VERTEBRATE SKIN DIFFERS FROM INVERTEBRATE SKIN TWO LAYERS – Outer epidermis derived from ectoderm Inner dermis or corium of mesodermal origin. The relative amount of the two layers varies with the environment. EPIDERMIS – the epidermis is made of stratified epithelium (several layers of columnar epithelium cells). These cells are held together tightly by minute intercellular bridges found on the surface of cells. The innermost layer is stratum Malpighii or stratum germinativum placed over a thin basement membrane. These cells divide constantly to produce new cells. Move upwards, tend to become flattened, protoplasm becomes horny (keratinisation). In fishes and amphibians, this keratinised layer forms a cuticle, but in amniotes, it forms stratum corneum, of hard, horny, flat, cornified cells made largely of keratin, which is tough, waterproof and insoluble protein. It affords protection against mechanical injuries, fungal and bacterial attacks and prevents desiccation. In many Tetrapoda, this layer is shed periodically in pieces or all at once. No stratum corneum in cyclostomes and fishes (since they are fully aquatic) here the epidermis has mucous glands, secreting mucus to keep the skin slimy and protects it from bacteria. The epidermis has no blood vessels and is nourished by capillaries in the dermis. The epidermis rests on a thin basement membrane which separates it from the dermis Dermis has an outer loose layer and inner dense layer Made up of dense connective tissue having cells, muscles, blood vessels, lymph vessels, collagen and elastic fibres, and nerves. Amphibians and reptiles -collagen fibres at right angles in three planes Birds and mammals, they have an irregular arrangement. Substances pass by diffusion from the dermis to the epidermis. Skin contains pigment, if present in epidermis, it occurs as a diffuse substance or as granules. If in dermis, then in the form of granules in special branching cells called chromatophores. The pigment can either collect as a central ball making the skin lighter or spread out into all the branches making the skin darker, thus, chromatophores bring about colour variations. Chromatophores are of many kinds, Melanophores that contain brown to black pigment Lipophores or xanthophores which contain yellow red fatty pigments Iridocytes or guanophores contain crystals of guanine which reflect light. Under dermis, the skin has subcutaneous loose areolar tissue which separates the skin from the underlying muscles, it may contain fat and muscles, especially in mammals. Integument of Anamnia shows a decrease in thickness and also a decrease in the degree of ossification. These are of advantage in allowing greater mobility and in amphibians, they permit respiration by the skin. But in Amniota, the skin becomes progressively thicker to prevent loss of water and to retain body heat. STRUCTURE OF INTEGUMENT IN CYCLOSTOMATA Epidermis is multi-layered (stratified) but has no keratin. It has three types of unicellular gland cells: mucus glands (secrete mucus), club cells (scab-forming cells) and granular cells (unknown function). Below epidermis is the cutis formed of collagen and elastin fibres. Star- shaped pigment cells are also present in the cutis. STRUCTURE OF INTEGUMENT IN PISCES The epidermis has several layers of simple and thin cells, but there is no dead stratum corneum. The outermost cells are nucleated and living. The stratum Malpighii replenishes the outer layers of cells which have some keratin. Unicellular goblet or mucous gland cells are found in the epidermis, as in all aquatic animals. The mucous makes the skin slimy reducing friction between the body surface and water, protects the skin from bacteria and fungi and assists in the control of osmosis. Multicellular epidermal glands like poison glands and light producing organs may also be found. The epidermis rests on a delicate basement membrane. The dermis contains connective tissue, smooth muscles, blood vessels, nerves, lymph vessels and collagen fibres. The connective tissue fibres are generally not arranged at right angles but run parallel to the surface. Scales are embedded in the dermis and projected above the epidermal surface. The colours of fishes are due to chromatophores and iridocytes. STRUCTURE OF INTEGUMENT IN AMPHIBIA: The epidermis has several layers of cells, six to eight cells in thickness and is divisible into three layers: stratum corneum, stratum germinativum and a basal portion in contact with the basement membrane. The outermost layer is a stratum corneum, made of flattened, highly keratinised cells. Such a dead layer appears first in amphibians and is best formed in those which spend a considerable time on land. The stratum corneum is an adaptation to terrestrial life (protects body and prevents excessive loss of moisture). In ecdysis, stratum corneum is cast off in fragments or as a whole in some. (moulting / desquamation i.e., removal of unicellular sheet of stratum corneum). The dermis is relatively thin in amphibians, it is made of two layers - upper loose stratum spongiosum and a lower dense and compact stratum compactum. Connective tissue fibres run both vertically and horizontally. Blood vessels, lymph spaces, glands and nerves are abundant in the stratum spongiosum. There are two kinds of glands, multicellular mucous glands and poison glands in the dermis, but they are derivatives of the epidermis. Mucous gland produces mucus (slimy protective covering, helps in respiration). Amphibian skin is an important organ of respiration. Poison glands produce a mild but unpleasant poison which is protective. In the upper part of the dermis are chromatophores. (melanophores and lipophores) Ability of the skin for changing colour to blend with the environment is well developed. INTEGUMENT IN REPTILIA. The integument is thick and dry, it prevents any loss of water, it has almost no glands. The only glands present are scent glands for sexual activity. The epidermis has a well-developed stratum corneum well adapted to terrestrial life. The horny scales of reptiles are derived from this layer. Ecdysis is necessary to remove dead outer layers, hence scales are shed periodically in fragments or cast in a single slough as in snakes and some lizards Scales often form spines or crests. Below the epidermal scales are dermal bony plates or osteoderms in tortoises, crocodiles and some lizards (Heloderma). The dermis is thick and has an upper layer and a lower layer, upper layer has abundance of chromatophores in snakes and lizards. Lower layer has bundles of connective tissue in which collagen fibres lie at right angles. Leather of high commercial value can be prepared from the skin of many reptiles like lizards, snakes and crocodiles. Many lizards and snakes have elaborate colour patterns, they may be for concealment or as warning colours. There is marked colour change in certain lizards such as chameleon, the colour may change with the environment for concealment or it may change in courtship or threat. The ability of chameleons and some other animals to change colour is known as metachrosis. (metachromatism) In Calotes, chromatophores are controlled by the posterior lobe of pituitary whereas in chameleons they are controlled by the Autonomic Nervous System. INTEGUMENT IN BIRDS Thin, loose, dry and devoid of glands. There is only a uropygial gland at the base of the tail, its oil is used for preening (to clean and tidy its feathers with its beak) and waterproofing the feathers (aquatic birds) Epidermis is delicate except on shanks and feet where it is thick and forms epidermal scales. The rest of the body has a protective covering of epidermal feathers. The keratin producing powers of the epidermis are devoted to producing feathers and scales. The dermis is thin and has interlacing connective tissue fibres, abundant muscle fibres for moving feathers, blood vessels and nerves. The dermis has an upper and lower compact layer, between which is a vascular layer, the dermis also contains fat cells. The skin has no chromatophores. Pigment is found only in feathers and scales. Colour patterns in birds are vivid (concealment, recognition and sexual stimulation) Colours are produced partly by pigments and partly by reflection and refraction from the surface of the feathers. INTEGUMENT IN MAMMALS Skin is elastic and waterproof, much thicker than in other animals, especially the dermis is very thick and is used in making leather. Epidermis is thickest in mammals. Outer stratum corneum containing keratin, cells not dead as believed before. Below this is stratum lucidum (barrier layer), chemical called eleidin Below this stratum granulosum, darkly staining granules of keratohyalin Below this is stratum spinosum whose cells are held together by spiny intercellular bridges. Lastly stratum germinativum which rests on a basement membrane Dermis is best developed in mammals. Upper layer is papillary layer made up of elastic and collagen fibres with capillaries in-between, thrown into folds called dermal papillae, especially in areas of friction Greater lower part of dermis is reticular layer, having elastic and collagen fibres. In both layers there are blood vessels, nerves smooth muscles, certain glands tactile corpuscles and connective tissue fibres in all directions. Below dermis the subcutaneous tissue contains a layer of fat cells forming adipose tissue In the lowest layer of epidermis there are pigment granules, no pigment bearing chromatophores in mammaIs (in man, branching dendritic cells or melanoblasts) FUNCTIONS OF THE INTEGUMENT ▪ PROTECTION ▪ TEMPERATURE CONTROL ▪ FOOD STORAGE ▪ SECRETION ▪ EXCRETION ▪ SENSATION ▪ RESPIRATION ▪ LOCOMOTION ▪ DERMAL ENDOSKELETON ▪ SEXUAL SELECTION 1. Protection: The integument forms a covering of the body and is protective. It protects the body against entry of foreign bodies and against mechanical injuries. It protects the tissues against excessive loss of moisture, this is very important because both aquatic and terrestrial animals are dependent upon water in their bodies for various metabolic activities. The integument forms protective derivatives, such as scales, bony plates, layer of fat, feathers and hair which reduce the effect of injurious contacts. In some animals the skin shows protective colouration which makes the animals resemble their environment, thus, making them almost invisible to their enemies. Poison glands of toads, slippery skin of aquatic animals and an armour of spines of some mammals are protective devices of the integument. The skin forms a covering which prevents the passage of water and solutes in one of the following ways: (a) By formation of cuticle in Protochordata and embryos of fishes and amphibians, (b) By secreting a coat of mucus in fishes and aquatic amphibians, and (c) By formation of keratin layers in the epidermis of tetrapoda. Keratin is formed from the cytoplasm of degenerating cells of the epidermis which finally form a layer of horny stratum corneum. 2. Temperature Control: Heat is produced constantly by oxidation of food stuffs in tissues. This heat is distributed evenly by the circulating blood. The body heat is lost constantly with expired breath, with faeces and urine, and from the surface of the skin. The integument regulates heat and maintains a constant temperature in endothermal animals. In birds the heat is regulated by adjustment of feathers which retain a warm blanket of air, when feathers are held close to the body, they remove warm air and body cooled, when feathers are fluffed out, they keep the warm air enclosed. In mammals, constant evaporation of sweat regulates the body heat. In cold weather contraction of skin’s blood capillaries reduces the loss of body heat. In some animals, fat in the skin prevents loss of heat because it is a non-conductor of heat. 3. Food Storage: The skin stores fat in its layers as reserve food material which is used for nourishment in times of need. In whales and seals the fat of the skin forms a thick layer, called blubber which is not only reserve food but also maintains the body temperature. 4. Secretion: The skin acts as an organ of secretion. Glands of the skin are secretory. In aquatic forms there are secretory mucous glands whose secretions keep the skin moist and slippery. In mammals, sebaceous glands secrete oil which lubricates the skin and hairs. Mammary glands produce milk for nourishment of the young. In birds uropygial glands secrete oil for preening the feathers. Odours of scent glands attract the opposite sex. Lacrymal glands’ secretion wash the conjunctiva of eyeball in mammals. Ear wax (cerumen) secreted by the glands of auditory meatus greases the eardrums and avoids insects to enter the canal. 5. Excretion: The integument acts as an organ of excretion. Shedding of the corneal layer during ecdysis removes some waste substances. In mammals metabolic waste (salts, urea and water) is removed from the blood by means of sweat. Chloride secreting cells are found in gills of marine fishes. 6. Sensation: The skin is an important sense organ because it has various kinds of tactile cells and corpuscles which are sensory to touch, temperature changes, heat, cold, pressure and pain. 7. Respiration: In amphibians, the moist skin acts as an organ of respiration, in frogs the respiratory function of the skin is greater than that of the lungs. 8. Locomotion: Derivatives of the integument bring about locomotion in some animals, such as the fins of fishes aid in locomotion in water, the web of skin in the feet of frogs and aquatic birds aid in swimming, feathers of the wings and tail of birds are used for flying, and extensions of the integument forming “wings” of flying lizards, extinct pterodactyls, flying squirrels and bats. 9. Dermal Endoskeleton: The skin contributes to the endoskeleton. It forms the dermal bones of vertebrates and also forms parts of the teeth. Endoskeleton of head protects the brain and sense organs. In the body it protects the soft, tender viscera. 10. Sexual Selection: The skin acts as an organ of sexual selection. It provides the feathers of birds which often have brilliant colours which are for sexual attraction. Some integumentary glands of mammals produce odours far attracting the opposite sex. Antlers of male deer distinguish it from female. Besides the above functions, mammalian skin synthesizes the vitamin D with the help of Sebum of sebaceous glands. Brood pouches beneath skin in some fishes and amphibians protect unhatched eggs. Nasal glands of tetrapods, keep the nostrils free of dirt and water. Skin also has the power of absorption of oils, ointments, etc
flashcards Flashcard (4)
studied byStudied by 0 people
3 days ago
0.0(0)

Notes

note Note
studied byStudied by 2 people
9 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
21 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
28 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
35 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
58 minutes ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 2 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
1 hour ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)
note Note
studied byStudied by 0 people
2 hours ago
0.0(0)

Users