Results for "monocytes"

Filters

Flashcards

Week 14 Lecture Quiz
Updated 14d ago
flashcards Flashcards (38)
Know the relationship between molecular weight and rate of diffusion The rate of diffusion is inversely proportional to the molecular weight Small weight-fast diffusion; heavy weight-slow diffusion Identify RBC’s in various solution and determine tonicity Tonicity - the ability of an extracellular solution to make water move into or out of a cell by osmosis If a cell is placed in a hypertonic solution, there will be a net flow of water out of the cell, and the cell will lose volume (shrink). A solution will be hypertonic to a cell if its solute concentration is higher than that inside the cell, and the solutes cannot cross the membrane. If a cell is placed in a hypotonic solution, there will be a net flow of water into the cell, the cell will gain volume (bigger). If the solute concentration outside the cell is lower than inside the cell, then solutes cannot cross the membrane, then the solution is hypotonic to the cell. If a cell is placed in an isotonic solution, there will be no set flow of water into or out of the cell, and the cell’s volume will remain stable. If the solute concentration outside the cell is the same as inside the cell, and the solutes cannot cross the membrane, the solution is isotonic to the cell. Homeostatic feedback loop for respiratory rate, heart rate and temperature Respiratory Rate: Stimulus : The level of carbon dioxide (CO2) in the blood increases (often due to exercise or hypoventilation) . Receptors: Chemoreceptors in the medulla oblongata, carotid arteries, and aortic arch detect changes in blood pH and CO2 levels Control Center: The medulla oblongata processes this information Effectors: Respiratory muscles (diaphragm and intercostal) adjust breathing rate and depth Response: Increased respiratory rate removes CO2 and increases O2 intake, restoring normal pH and gas levels. Heart Rate: Stimulus : Changes in blood pressure, O2, CO2, or pH levels Receptors: Baroreceptors (detect blood pressure changes) in the carotid sinus and aortic arch; chemoreceptors monitor blood chemistry Control Center: The medulla oblongata (cardiac center) processes signals Effectors : The autonomic nervous system (ANS) adjusts heart rate through the sympathetic nervous system (increases heart rate) or parasympathetic nervous system (decreases heart rate) Response : Heart rate increases during low O2 or low blood pressure (to circulate oxygen) and decreases when homeostasis is restored. Temperature Regulation Stimulus: Changes in body temperature (hyperthermia or hypothermia) Receptors: Thermoreceptors in the skin and hypothalamus detect temperature fluctuations. Control Center: The hypothalamus processes this information and signals effectors Effectors and Responses: If too hot: Blood vessels dilate (vasodilation) to release heat, and sweat glands produce sweat for cooling If too cold: Blood vessels constrict (vasoconstriction) to retain heat, and shivering generates warmth. Steps of a generic homeostatic feedback loop Stimulus : A change in the internal or external environment that disrupts homeostasis (eg. temperature change, pH levels, blood sugar levels) Sensor (Receptor) : Specialized cells or receptors detect the change and send information to the control center. Control Center (Integrator): Often the brain or endocrine glands, this component processes the information from the sensors and determines the appropriate response to restore balance. Effector: This component carries out the response to the stimulus as dictated by the control center. Effectors can be muscles or glands that help to counteract the change. Response: The action taken by the effectors to restore homeostasis. This could involve increasing or decreasing a physiological process (e.g. sweating to cool down or shivering to warm up) Feedback: The results of the response are monitored. If homeostasis is restored, the system maintains its state; if not, the loop may repeat, continuing to adjust until balance is achieved. How to evaluate data to determine the set point, error, and disturbance Identify the set point The set point is the optimal level or range that the system aims to maintain. To determine the set point: Gather baseline data: Collect data over a period to understand the normal range for the variable in question (e.g. body temp., BP, blood glucose levels) Analyze Trends: Look for patterns in the data to identify the average or median value that represents the stable condition of the system. Consult Literature: Reference established physiological norms or previous studies to confirm the typical set point for the variable. Assess Disturbance A disturbance is any factor or event that causes a deviation from the set point. To evaluate disturbances: Identify External and Internal Factors: Analyze the data for any external influences (e.g. environmental changes, dietary habits) or internal changes (e.g. illness, stress) that might have impacted the variable. Quantity Disturbance: Measure the magnitude and duration of the disturbance. This can be done by comparing the data points during the disturbance against the established set point. Monitor Changes: Track how the system responds to disturbances over time to assess their impact on maintaining homeostasis. WBC types and normal distribution values/ abnormal values and what those values indicate (infections/diseases) (Never Let Monkeys Eat Bananas) Neutrophils (50-70%) - First responders to infections, especially bacterial. High levels indicate bacterial infections, inflammation, or stress. Low levels can indicate bone marrow disorders or severe infections. Lymphocytes (20-40%) - Include B cells and T cells, important for immunity. High levels can suggest viral infections or leukemia, while low levels might indicate immune deficiency. Monocytes (2-8%) - Help with cleaning up dead cells and fighting infections. High levels can be linked to chronic infections or autoimmune diseases. Eosinophils (1-4%) - Involved in allergic reactions and fighting parasites. Elevated levels may indicate allergies or parasitic infections. Basophils (0.5-1%) - Release histamine during allergic reactions. High levels might be see in allergic conditions or blood disorders. Normal WBC Count Total WBC Count: 4000-11000 cells per microliter of blood (varies slightly by lab) Leukocytosis (High WBC): Can indicate infection, inflammation, stress, or leukemia Leukopenia (Low WBC): Can result from bone marrow disorders, viral infections, or autoimmune diseases Neutrophils: Banded vs Segmented Neutrophils are the most abundant type of white blood cells and play a crucial role in fighting infections. They exist in different stages of maturation: Banded Neutrophils (“Bands”) - Immature Neutrophils Appearance: Have a curved, unsegmented nucleus (band-shaped) Normal Range: 0-6% of total WBC count (~0-700/uL) Clinical Significance: Increased Bands (Bandemia) -> Indicates an acute bacterial infection or severe stress (e.g. sepsis). The bone marrow releases immature neutrophils in response to infection. Low Bands -> Not clinically significant unless the total WBC count is low, which could suggest bone marrow suppression. Segmented Neutrophils (“Segs”) - Mature Neutrophils Appearance: Have a segmented nucleus with 2-5 lobes Normal Range: 50-70% of total WBC count (~2500-7000/uL) Clinical Significance: High Segs (Neutrophilia) -> Suggests bacterial infections, stress, chronic inflammation, or leukemia Low Segs (Neutropenia) ->Can be caused by viral infections, bone marrow disorders, chemotherapy, or autoimmune diseases. Discuss the stages of cell cycle/mitosis-which stages are longest/shortest The cell cycle is a series of events that cells go through to grow and divide. It consists of two main phases: Interphase (Longest Phase) – Preparation for division Mitosis (Shortest Phase) – Actual cell division Stages of the Cell Cycle Interphase (90% of the Cell Cycle – Longest Phase) Interphase is the period of cell growth and DNA replication. It has three subphases: G1 Phase (Gap 1) The cell grows, produces proteins, and prepares for DNA replication. Longest variable phase; some cells may stay here indefinitely (e.g., neurons in G0 phase). S Phase (Synthesis) DNA replication occurs, ensuring each daughter cell gets a complete genome. Takes about 6-8 hours in human cells. G2 Phase (Gap 2) The cell prepares for mitosis by producing proteins and organelles. Shorter than G1 but still significant in length. Mitosis: Prophase, Metaphase, Anaphase, Telophase Know proportional and inversely proportional relationships Direct (Proportional) Relationship When two quantities increase or decrease together at a constant rate, they are directly proportional. Inversely Proportional When one variable increases, the other decreases proportionally. Know relationship between molecular weight and rate of diffusion The rate of diffusion of a substance is inversely proportional to the square root of its molecular weight. Lighter molecules diffuse faster Heavier molecules diffuse slower due to greater mass. Know relationship between filtration rate and pressure of fluid or weight of fluid Filtration rate is directly proportional to the pressure or weight of the fluid driving the filtration process. Higher pressure → Higher filtration rate Lower pressure → Lower filtration rate Know why men and women blood values are different The differences in blood values between men and women are due to biological, hormonal, and physiological factors
Updated 43d ago
flashcards Flashcards (8)
Monocytes
Updated 81d ago
flashcards Flashcards (4)
Hematology Basics & Hematopoiesis HEMATOLOGY What is it? Encompasses: Skill, Art, Instinct Relationships BM:circulation Plasma:RBC Hgb:RBC What Will I Learn? Students find Hematology difficult because it requires you to think in a new way. Begin with limited knowledge: Given Facts and you must be able to answer “WHY” Given images and you must be able to recognize and classify This Course Hematology I – MLTS 207 Intro Red Cells Hematology II – MLTS 208 White Cells Coagulation Our Tool Safety First Standard Precautions PPE Hand washing Proper disposal Proper cleaning Know what to do in case of an emergency Fire Spill Needle stick QA vs QC Quality Assurance Comprehensive Preanalytical – Analytical - Post-analytical Ensures reliable patient results = positive outcome Quality Control is Analytical only – focuses on actual measurement of the analyte Quality Control Standards / Calibrators Controls Statistical quality control system Normals AKA Reference ranges Plt 150 – 450 X 103/ul Unique to analyte, method, instrument and patient population Delta Check Critical Values Blood Basics Average blood volume 4 – 6 liters Blood pH = 7.35 – 7.45 Components of whole blood 55% plasma - 44% RBCs - 1% WBCs and platelets (buffy coat) Red Blood Cell (Erythrocyte or RBC) White Blood Cell (Leukocyte or WBC) Platelets (Thrombocyte) Plasma is 91.5% water and 8.5% solutes Reference Ranges (patient normals) RBC 4.2 – 5.4 X 1012/L (106/ul) females 4.7 – 6.1 X 1012/L (106/ul) males WBC 5 – 10 X 109/L (103/ul) Platelets 150 – 450 X 109/L (103/ul) Blood Smears (Slides) Cells evaluated in an area where red cells are almost touching but do not overlap Smears can be made by hand or mechanically Smears are stained with Wright’s stain Smear is examined on 100X using oil to evaluate RBC morphology RBC Morphology Red cells are biconcave disk that are 7 – 8 um in diameter with a volume - 90fL (femtoliters) When stained they appear as: Circular cells with distinct smooth margins Dull pinkish hue Area of central pallor Fairly uniform in size No nucleus or inclusions Platelet Morphology Platelets are 2 – 4um in diameter and discoid shaped they contain reddish-purple granules in a small amount of bluish cytoplasm and have no nucleus Leukocytes Segmented neutrophils - AKA segs or PMN Band neutrophils Eosinophils Basophils Lymphocytes Monocytes Hematopoiesis Definition? Daily Production Quotas RBCs – 3 billion WBCs – 1.5 billion Plts – 2.5 billion Your body can: Constantly supply mature blood cells for circulation Mobilize Bone Marrow to increase production of a particular type of blood cell Compensate for decreased hematopoiesis by providing hematopoietic sites outside the BM The Beginning All blood cells are the progeny of hematopoietic pluriopotential stem cell In adults these are found in the bone marrow. Why? Monophyletic Theory A common precursor cell, the pluripotential stem cell, which under the influence of certain factors gives rise to each of the principle blood cell lines Cytokines - Pretty much universally accepted today based on clinical and experimental evidence and started with mice in 1961 Based on this theory, hematopoietic cells may be divided into 3 cellular catagories dependant on maturity 1 Multipotential stem cell able to self-renew and to differentiate into all blood cell lines 2 Committed progenitor cell destined to develop into distinct cell lines 3 Mature cells with specialized functions which have lost the capability to proliferate Hematopoietic Stem Cell Most important characteristic – must self renew Ability to differentiate into commited progenitor cells of lymphoid or myloid lineages Maturation Process (p.20) Hematopoiesis From Coception to Adulthood (p.16) Yolk Sac (embryonic hemoglobin) Begins 2 -3 weeks after fertilization and ceases after 8 – 10 weeks Fetal Liver (fetal hemoglobin) Production from about 2 – 7 months Liver is main site but spleen, thymus, lymph nodes, and kidney are also involved Bone Marrow – called medullary hematopoiesis Begins to function in 3rd month of gestation Primary site by the end of 5th month of gestation and continues after birth and throughout adulthood Children distal long bones Adults axial bones Extramedullary Hematopoiesis is hematopoiesis outside bone marrow Not a normal occurrence after 5th month of gestation Happens in certain disorders Occurs in liver and spleen Erythropoiesis Definition? Mature erythrocytes carry oxygen from the lungs to tissue where it is exchanged for CO2 Erythropoietin (a cytokine) Hormone produced by the kidney Stimulates red cell production Secreted daily in small amounts Kidney will sense hypoxia and secrete more if needed What happens when more EPO is secreted by the kidneys? Development of Red Cell Reduction in cell volume Condensation of chromatin (Loss of nucleoli) Decrease in N:C ratio (less nucleus – more cytoplasm) Decrease of RNA in cytoplasm Increased hemoglobin synthesis – to a point cell turns from blue to red Developmental Stages (images p33 - 35) Rubriblast (Pronormoblast) Each produces 8 – 16 mature red cells Stage where hemoglobin synthesis begins Prorubricyte (Basophilic Normoblast) Rubricyte (Polychromatophilic Normoblast) Last stage capable of division Large amounts of hemoglobin synthesized at this stage Metarubricyte (Orthochroimatophilic Normoblast) Nucleated Red Blood Cell (NRBC) seen on peripheral smear Reticulocyte (Polychromatophilic Erythrocyte) Non-nucleated (nucleus extruded) Contains residual RNA and mitochondria which gives cell bluish tinge with Wright’s stain Last stage to synthesize hemoglobin Part of this phase occurs in the bone marrow, later part takes place in circulating blood Mature Erythrocyte Stains pink because of large amount of hemoglobin No RNA or mitochondria = no synthesizing of proteins or lipids Normal lifespan 120 days Have You Seen Your Spleen Fist shaped organ located on the left side under the rib cage Blood filled organ consisting of Red pulp – red cell filtration Cull old or abnormal RBCs (Reticuloedothelial System) Pit RBC inclusions Remove Antibodies - spherocytes White pulp – lymphocyte processing Marginal zone – WBC & Plt storage 1/3 population of each Bone Marrow not Bowel Movement One of the largest organs in the body Inside you find erythroid cells, myloid cells, and megakaryocytes in various stages of development – stem cells, fatty tissue, osteoclasts, etc. As you age marrow in long bones is replaced by fat Adult marrow in iliac crest and sternum. M:E ratio -Myeloid to erythroid ratio Normally 3-4:1 Why are there more myloid cells in the bone marrow and more RBCs in circulation?
Updated 103d ago
flashcards Flashcards (4)
Negative and Positive Feedback Loops Control hormone levelsNegative feedback loopHormone release stops in response to decrease in stimulus- Stimulus (eating) raises blood glucose levels- Pancreas releases insulin in response to elevated blood   glucose- Blood glucose decreases as it is used by the body or  stored in the liver - Insulin release stops as blood glucose levels normalize Positive feedback loop As long as stimulus is present, action of hormone continues- Infant nursing at mother’s breast→stimulates  hypothalamus→stimulates posterior pituitary- Oxytocin released→stimulates milk production  and ejection from mammary glands- Milk release continues as long as infant  continues to nurse The Major Endocrine OrgansThe major endocrine organs of the body include: the pituitary, pineal, thyroid, parathyroid, thymus, and adrenal glands, pancreas, and gonads (ovaries and testes)Endocrine glands - Ductless - Release hormones - Directly into target tissues - Into bloodstream to be carried to target tissuesHormones(Greek word hormone – to set into motion)     Pituitary Gland and Hypothalamus o The pituitary gland is approximately the size of a pea. o It hangs by a stalk from the inferior surface of the hypothalamus of the brain, where it is snugly surrounded by the sella turcica of the sphenoid bone. o It has two functional lobes – the anterior pituitary (glandular tissue) and the posterior pituitary (nervous tissue). o The anterior pituitary gland controls the activity of so many other endocrine glands (“master endocrine gland”) o The release of each of its hormones is controlled by releasing hormones and inhibiting hormones produced by the hypothalamus. o The hypothalamus also makes two additional hormones, oxytocinand antidiuretic hormone, which are transported along the axons of the hypothalamic nuerosecretory cells to the posterior pituitary for storage. They are later released into the blood in response to nerve impulses from the hypothalamus. Oxytocin o Is released in significant amounts only during childbirth and nursing. o It stimulates powerful contractions of the uterine muscle during sexual relations, during labor, and during breastfeeding. o It also causes milk ejection (let-down reflex) in a nursing woman. Antidiuretic Hormone (ADH) o ADH is a chemical that inhibits or prevents urine production. o ADH causes the kidneys to reabsorb more water from the forming urine; as a result, urine volume decreases, and blood volume increases. o In larger amounts, ADH also increases blood pressure by causing constriction of the arterioles (small arteries). For this reason, it is sometimes referred to as vasopressin. Anterior Pituitary HormonesThe anterior pituitary produces several hormones that affect many body organs. Growth Hormone (GH) o Its major effects are directed to the growth of skeletal muscles and long bones of the body o At the same time, it causes fats to be broken down and used for energy while it spares glucose, helping to maintain blood sugar homeostasis. ProlactinIts only known target in humans is the breast.After childbirth, it stimulates and maintains milk production by the mother’s breasts.Gonadotropic Hormones (FSH and LH) o Regulate the hormonal activity of the gonads (ovaries and testes) o In women, the FSH stimulates follicle development in the ovaries. o In men, FSH stimulates sperm production by the testes. o LH triggers ovulation of an egg from the ovary and causes the ruptured follicle to produce progesterone and some estrogen. o LH stimulates testosterone production by the interstitial cells of the testes. Pineal Gland The pineal gland is a small, cone-shaped gland that hangs from the roof of the third ventricle of the brain. Melatonin o The only hormone secreted from pineal gland in substantial amounts o Believed to be a “sleep trigger” that plays an important role in establishing the body’s sleep-wake cycle. o The level of melatonin rises and falls during the course of the day and night. o The peak level occurs at night and makes us drowsy o The lowest level occurs during daylight around noon. Thyroid Gland • The thyroid gland is located at the base of the throat, just inferior to the Adam’s apple. • It is a fairly large gland consisting of two lobes joined by a central mass, or isthmus. • The thyroid gland makes two hormones, one called thyroid hormone, the other called calcitonin. Thyroid Hormone o Referred to as body’s major metabolic hormone o Contains two active iodine-containing hormones, thyroxine (T4)and thriiodothyronine (T3) o Most triiodothyronine is formed at the target tissues by conversion of thyronine to triiodothyronine o Thyroid hormone controls the rate at which glucose is “burned”, or oxidized, and converted to body heat and chemical energy (ATP). o Thyroid hormone is also important for normal tissue growth and development, especially in the reproductive and nervous systems. Homeostatic Imbalance ➢ Without iodine, functional thyroid hormones cannot be made. ➢ The source of iodine is our diet (seafoods) ➢ Goiter is an enlargement of the thyroid gland that results when the diet is deficient in iodine. Hyposecretion of thyroxine may indicate problems other than iodine deficiency. If it occurs in early childhood, the result is cretinism. ▪ Results in dwarfism and mental retardation (if discovered early, hormone replacement will prevent mental impairment) Hypothyroidism occurring in adults results in myxedema ▪ Characterized by both physical and mental sluggishness (no mental impairment) ▪ Other signs are puffiness of the face, fatigue, poor muscle tone, low body temperature, obesity, and dry skin (Oral thyroxine is prescribed to treat this condition)   ➢ Hyperthyroidism generally results from a tumor of the thyroid gland. ➢ Extreme overproduction of thyroxine results in a high basal metabolic rate, intolerance of heat, rapid heartbeat, weight loss, nervous and agitated behavior, and a general inability to relax. Graves’ disease o A form of hyperthyroidism o The thyroid gland enlarges, the eyes bulge (exophthalmos) Calcitonin ➢ Second important hormone product of the thyroid gland ➢ Decreases the blood calcium ion level by causing calcium to be deposited in the bones Parathyroid Glands ➢ The parathyroid glands are tiny masses of glandular tissue most often on the posterior surface of the thyroid gland. ➢ Parathyroid hormone (PTH) is the most important regulator of calcium ion homeostasis of the blood. ➢ Although the skeleton is the major PTH target, PTH also stimulates the kidneys and intestine to absorb more calcium ions. Homeostatic Imbalance o If blood calcium ion level falls too low, neurons become extremely irritable and overactive. They deliver impulses to the muscles so rapidly that the muscles go into uncontrollable spasms (tetany), which may be fatal. o Severe hyperparathyroidism causes massive bone destruction. The bones become very fragile, and spontaneous fractures begin to occur. Thymus o Is located in the upper thorax, posterior to the sternum. o Large in infants and children, it decreases in size throughout adulthood. o By old age, it is composed mostly of fibrous connective tissue and fat. o The thymus produces a hormone called thymosin and others that appear to be essential for normal development of a special group of white blood cells (T lymphocytes) and the immune response. Adrenal Glands o The two adrenal glands curve over the top of the kidneys like triangular hats. o It is structurally and functionally two endocrine organs in one.   • it has parts made of glandular (cortex) and neural tissue (medulla) • The central medulla region is enclosed by the adrenal cortex, which contains three separate layers of cells. Hormones of the Adrenal CortexThe adrenal cortex produces three major groups of steroid hormones, collectively called corticosteroids: 1. Mineralocorticoids (aldosterone) ➢ Are produced by the outermost adrenal cortex cell layer. ➢ Are important in regulating the mineral (salt) content of the blood, particularly the concentrations of sodium and potassium ions. ➢ These hormones target the kidney tubules(Distal Convulating Kidney Tubles) that selectively reabsorb the minerals or allow them to be flushed out of the body in urine. ➢ When the blood level of aldosterone rises, the kidney tubule cell reabsorb increasing amounts of sodium ions and secrete more potassium ions into the urine. ➢ When sodium is reabsorbed, water follows. Thus, the mineralocorticoids help regulate both water and electrolyte balance in body fluids. 2. Glucocorticoids (Cortisone and Cortisol)  ➢ Glucocorticoids promote normal cell metabolism and help the body to resist long-term stressors, primarily by increasing the blood glucose level. ➢ When blood levels of glucocorticoids are high, fats and even proteins are broken down by body cells and converted to glucose, which is released to the blood. ➢ For this reason, glucocorticoids are said to be hyperglycemic hormones. ➢ Glucocorticoids also seem to control the more unpleasant effects of inflammation by decreasing edema, and they reduce pain by inhibiting the pain-causing prostaglandins. ➢ Because of their anti-inflammatory properties, glucocorticoids are often prescribed as drugs to suppress inflammation for patients with rheumatoid arthritis. ➢ Glucocorticoids are released from the adrenal cortex in response to a rising blood level of ACTH (Adrenocorticotropic hormone). 3. Sex Hormones ➢ In both men and women, the adrenal cortex produces both male and female sex hormones throughout life in relatively small amounts. ➢ The bulk of the sex hormones produced by the innermost cortex layer are androgens (male sex hormones), but some estrogens (female sex hormones) are also formed. Homeostatic Imbalance1. Addisson’s disease (hyposecretion of all the adrenal cortex hormones) ✓ Bronze tone of the skin (suntan) ✓ Na (sodium) and water are lost from the body ✓ Muscles become weak and shock is a possibility ✓ Hypoglycemia (↓ glucocorticoids) ✓ Suppression of the immune system 2. Hyperaldosteronism (hyperactivity of the outermost cortical area) ✓ Excessive water and sodium ions retention ✓ High blood pressure ✓ Edema ✓ Low potassium ions level (hypokalemia) 3. Cushing’s Syndrome (Excessive glucocorticoids) ✓ Swollen “moon face” and “Buffalo hump” ✓ High blood pressure and hyperglycemia (steroid diabetes) ✓ Weakening of the bones (as protein is withdrawn to be converted to glucose) ✓ Severe depression of the immune system 4. Hypersecretion of the sex hormones leads to masculinization, regardless of sex. Hormones of the Adrenal Medulla ➢ When the medulla is stimulated by sympathetic nervous system neurons, its cells release two similar hormones, epinephrine(adrenaline) and norepinephrine (noradrenaline), into the bloodstream. ➢ Collectively, these hormones are called catecholamines. ➢ The catecholamines of the adrenal medulla prepare the body to cope with short-term stressful situations and cause the so-called alarm stage of the stress response. ➢ Glucocorticoids, by contrast, are produced by the adrenal cortex and are important when coping with prolonged or continuing stressors, such as dealing with the death of a family member or having a major operation (resistance stage). Pancreatic Islets ➢ The pancreas, located close to the stomach in the abdominal cavity, is a mixed gland. ➢ The pancreatic islets, also called the islets of Langerhans, are little masses of endocrine (hormone-producing) tissue of the pancreas. ➢ The exocrine, or acinar, part of the pancreas acts as part of the digestive system. ➢ Two important hormones produced by the islet cells are insulin and glucagon. Insulin ➢ Hormone released by the beta cells of the islets in response to a high level of blood glucose. ➢ Acts on all body cells, increasing their ability to import glucose across their plasma membranes. ➢ Insulin also speeds up these “use it” or “store it” activities. ➢ Because insulin sweeps the glucose out of the blood, its effect is said to be hypoglycemic. ➢ Without it, essentially no glucose can get into the cells to be used. Glucagon ➢ Acts as an antagonist of insulin ➢ Released by the alpha cells of the islets in response to a low blood glucose levels. ➢ Its action is basically hyperglycemic. ➢ Its primary target is the liver, which it stimulates to break down stored glycogen to glucose and to release the glucose into the blood. Gonads ➢ The female and male gonads produce sex cells. ➢ They also produce sex hormones that are identical to those produced by adrenal cortex cells. ➢ The major differences from the adrenal sex hormone production are the source and relative amounts of hormones produced. Hormones of the OvariesBesides producing female sex cells (ova, or eggs), ovaries produce two groups of steroid hormones, estrogens and progesterone. 1. Estrogen (Steroid Hormone) ➢ Responsible for the development of sex characteristics in women (primarily growth and maturation of the reproductive organs) and the appearance of secondary sex characteristics at puberty. ➢ Acting with progesterone, estrogens promote breast development and cyclic changes in the uterine lining (the menstrual cycle) 2. Progesterone (Steroid Hormone) ➢ Acts with estrogen to bring about the menstrual cycle. ➢ During pregnancy, it quiets the muscles of the uterus so that an implanted embryo will not be aborted and helps prepare breast tissue for lactation. Hormones of the TestesIn addition to male sex cells, or sperm, the testes also produce male sex hormones, or androgens, of which testosterone is the most important. 3. Testosterone ➢ Promotes the growth and maturation of the reproductive system organs to prepare the young man for reproduction. ➢ It also causes the male’s secondary sex characteristics to appear and stimulates the male sex drive. ➢ It is necessary for continuous production of sperm. ➢ Testosterone production is specifically stimulated by LH. Other Hormone-Producing Tissues and OrgansPlacenta ➢ During very early pregnancy, a hormone called human chorionic gonadotropin (hCG) is produced by the developing embryo and then by the fetal parts of the placenta. ➢ hCG stimulates the ovaries to continue producing estrogen and progesterone so that the lining of the uterus is not sloughed off in menses. ➢ In the third month, the placenta assumes the job of the ovaries of producing estrogen and progesterone, and the ovaries become inactive for the rest of the pregnancy. ➢ The high estrogen and progesterone blood levels maintain the lining of the uterus and prepare the breasts for producing milk. ➢ Human placental lactogen (hPL) works cooperatively with estrogen and progesterone in preparing the breasts for lactation. ➢ Relaxin, another placental hormone, causes the mother’s pelvic ligaments and the pubic symphysis to relax and become more flexible, which eases birth passage. Developmental Aspects of the Endocrine System ➢ In late middle age, the efficiency of the ovaries begins to decline, causing menopause. o Reproductive organs begin to atrophy o Ability to bear children ends o Problems associated with estrogen deficiency begin to occur (arteriosclerosis, osteoporosis, decreased skin elasticity, “hot flashes”) ➢ No such dramatic changes seem to happen in men. ➢ Elderly persons are less able to resist stress and infection. ➢ Exposure to pesticides, industrial chemicals, dioxin, and pother soil and water pollutants diminishes endocrine function, which may explain the higher cancer rates among older adults in certain areas of the country. ➢ All older people have some decline in insulin production, and type 2 diabetes mellitus is most common in this age group. BLOOD ➢ It is the only fluid tissue in the body. ➢ A homogenous liquid that has both solid and liquid components. ➢ Taste, Odor, 5x thicker than water ➢ Classified as a connective tissue ❖Living cells = formed elements ❖Non-living matrix = plasma (90% water) Components •Formed elements (blood cells)are suspended in plasma •The collagen and elastin fibers typical of other connective tissues are absent from blood; instead, dissolved proteins become visible as fibrin strands during blood clotting •If a sample of blood is separated, the plasma rises to the top, and the formed elements, being heavier, fall to the bottom. •Most of the erythrocytes (RBCs) settle at the bottom of the tube •There is a thin, whitish layer called the buffy coat at the junction between the erythrocytes and the plasma containing leukocytes (WBCs) and platelets   Physical Characteristics and Volume • Color range ➢ Oxygen-rich blood is scarlet red ➢ Oxygen-poor blood is dull red • pH must remain between 7.35–7.45 • Slightly alkaline • Blood temperature is slightly higher than body temperature • 5-6 Liters or about 6 quarts /body   Functions and Composition of Blood 1. Transport of gases, nutrients and waste products 2. Transport of processed molecules 3. Transport of regulatory molecules 4. Regulation of pH and osmosis 5. Maintenance of body temp 6. Protection against foreign substances 7. Clot formation   Plasma • The liquid part of the blood; 90 percent water • Over 100 different substances are dissolved in this straw-colored fluid: ➢ nutrients ➢ electrolytes ➢ respiratory gases ➢ hormones ➢ plasma proteins; and ➢ various wastes and products of cell metabolism   • Plasma proteins are the most abundant solutes in plasma (albumin and clotting proteins) • Plasma helps to distribute body heat, a by-product of cellular metabolism, evenly throughout the body. Formed Elements Erythrocytes (RBCs) • Function primarily to ferry oxygen to all cells of the body. • RBCs differ from other blood cells because they are anucleate (no nucleus) • Contain very few organelles (RBCs circulating in the blood are literally “bags” of hemoglobin molecules ) •Very efficient oxygen transporters (they lack mitochondria and make ATP by anaerobic mechanisms) • Their small size and peculiar shape provide a large surface area relative to their volume, making them suited for gas exchange • RBCs outnumber WBCs by about 1,000 to 1 and are the major factor contributing to blood viscosity. • There are normally about 5 million cells per cubic millimeter of blood. • The more hemoglobin molecules the RBCs contain, the more oxygen they will be able to carry. • A single RBC contains about 250 million hemoglobin molecules, each capable of binding 4 molecules of oxygen. • Normal hemoglobin count is 12-18 grams of hemoglobin per 100 ml of blood • Men: 13-18g/ml Women: 12-16 g/ml   Homeostatic Imbalance Anemia • a decrease in the oxygen-carrying ability of the blood, whatever the reason is. • May be the result of (1) a lower-than-normal number of RBCs or (2) abnormal or deficient hemoglobin content in the RBCs.   Polycythemia Vera • An excessive or abnormal increase in the number of erythrocytes; may result from bone marrow cancer or a normal physiologic response to living at high altitudes, where the air is thinner and less oxygen is available (secondary polycythemia)     Formed Elements Leukocytes (WBCs) • Are far less numerous than RBCs • They are crucial to body defense • On average, there are 4,800 to 10,800 WBCs/mm3 of blood • WBCs contain nuclei and the usual organelles, which makes them the only complete cells in the blood. • WBCs are able to slip into and out of the blood vessels – a process called diapedesis • WBCs can locate areas of tissue damage and infection in the body by responding to certain chemicals that diffuse from the damaged cells (positive chemostaxis) • Whenever WBCs mobilize for action, the body speeds up their production, and as many as twice the normal number of WBCs may appear in the blood within a few hours. • A total WBC count above 11,000 cells/mm3 is referred to as leukocytosis. • The opposite condition, leukopenia, is an abnormally low WBC count (commonly caused by certain drugs, such as corticosteroids and anti-cancer agents) • WBCs are classified into two major groups – granulocytes and agranulocytes – depending on whether or not they contain visible granules in their cytoplasm.   Granulocytes Neutrophils ➢ Are the most numerous WBCs. ➢ Neutrophils are avid phagocytes at sites of acute infection. Eosinophils ➢ Their number increases rapidly during infections by parasitic worms ingected in food such as raw fish or entering through the skin. Basophils ➢ The rarest of the WBCs, have large histamine-containing granules. Histamine ➢ is an inflammatory chemical that makes blood vessels leaky and attracts other WBCs to the inflamed site   Agranulocytes Lymphocytes ➢ Have a large, dark purple nucleus that occupies most of the cell volume. ➢ Lymphocytes tend to take up residence in lymphatic tissues, such as the tonsils, where they play an important role in the immune response. ➢ They are the second most numerous leukocytes in the blood Monocytes ➢ Are the largest of the WBCs. ➢ When they migrate into the tissues, they change into macrophages. ➢ Macrophages are important in fighting chronic infections, such as tuberculosis, and in activating lymphocytes Platelets   ➢ They are fragments of bizarre multinucleate cells called megakaryocytes, which pinch off thousands of anucleate platelet “pieces” that quickly seal themselves off from the surrounding fluids. ➢ Normal adult has 150,000 to 450,000 per cubic millimeter of blood ➢ Platelets are needed for the clotting process that stops blood loss from broken blood vessels. ➢ Average lifespan is 9 to 12 days   Hematopoiesis • Occurs in red bone marrow, or myeloid tissue. • In adults, this tissue is found chiefly in the axial skeleton, pectoral andpelvic girdles, and proximal epiphyses of the humerus and femur. • On average, the red marrow turns out an ounce of new bloodcontaining 100 billion new cells every day. • All the formed elements arise from a common stem cell, thehemocytoblast, which resides in red bone marrow. • Once a cell is committed to a specific blood pathway, it cannotchange. • The hemocytoblast forms two types of descendants – the lymphoidstem cell, which produces lymphocytes, and the myeloid stem cell,which can produce other classes of formed elements.   Formation of RBCs • Because they are anucleate, RBCs are unable to synthesizeproteins, grow, or divide. • As they age, RBCs become rigid and begin to fall apart in 100 to 120 days. • Their remains are eliminated by phagocytes in the spleen, liver, and other body tissues. • RBC components are salvaged. Iron is bound to protein as ferritin, and the balance of the heme group is degraded to bilirubin, which is then secreted into the intestine by liver cells where it becomes a brown pigment called stercobilin that leaves the body in feces. • Globin is broken down to amino acids which are released into the circulation.The rate of erythrocyte production is controlled by a hormone called erythropoietin (from the kidneys) • Erythropoietin targets the bone marrow prodding it into “high gear” to turn out more RBCs. • An overabundance of erythrocytes, or an excessive amount of oxygen in the bloodstream, depresses erythropoietin release and RBC production. • However, RBC production is controlled not by the relative number of RBCs in the blood, but by the ability of the available RBCs to transport enough oxygen to meet the body’s demands   Formation of WBCs and Platelets   • The formation of leukocytes and platelets is stimulated by hormones • These colony stimulating factors (CSFs) and interleukins not only prompt red bone marrow to turn out leukocytes, but also enhance the ability of mature leukocytes to protect the body. • The hormone thrombopoietin accelerates the production of platelets from megakaryocytes, but little is know about how process is regulated. • When bone marrow problems or disease condition is suspected, bone marrow biopsy is done.   Hemostasis If a blood vessel wall breaks, a series of reactions starts the process of hemostasis (stopping the bleeding). Phases of Hemostasis 1. Vascular spasms occur. 2. Platelet plug forms. 3. Coagulation events occur.       Human Blood Groups • An antigen is a substance that the body recognizes as foreign; it stimulates the immune system to mount a defense against it. • The “recognizers” are antibodies present in plasma that attach to RBCs bearing surface antigens different from those on the patient’s RBCs.   ABO and Rh Blood Types The blood group system recognizes four blood types: • Type A, B, AB, and O • They are distinguished from each other in part by their antigens and antibodies. • Specific antibodies are found in the serum based on the type of antigen on the surface of the RBC   ABO and Rh Blood Types BLOOD TYPE Can Accept From Can Donate To A A, O A, AB B B, O B, AB AB A, B, AB, O AB O O O, A, B, AB   The Rh Factor Rh-Positive Rh-Negative Contains the Rh antigen -No Rh antigen   -Will make antibodies if given Rh-positive blood   -Agglutination can occur if given Rh-positive blood     Summary • Blood is responsible for transporting oxygen, fluids, hormones, and antibodies and for eliminating waste materials. • The major components of blood include the formed elements and plasma. • RBCs transport oxygen and carbon dioxide; WBCs destroy foreign invaders. • WBCs include granulocytes and agranulocytes. • Plasma is the liquid portion of unclotted blood. Serum is the liquid portion of clotted blood • Hemostasis includes four stages: blood vessel spasm, platelet plug formation, blood clotting, and fibrinolysis. • ABO and Rh types are determined by the antigen found on the RBCs
Updated 175d ago
flashcards Flashcards (71)
0.00
studied byStudied by 0 people