Results for "axons"

Filters

Flashcards

System Interactions in Animals Tools Finish System Interactions in Animals The human body is made of many different organ systems. Each system performs unique functions for the body, but the systems also interact with each other to perform more complex functions. Major Organ Systems Body Systems In humans, cells, tissues, and organs group together to form organ systems. These systems each perform different functions for the human body. The major organ systems and their functions in humans include: The Nervous System — The nervous systems consists of two parts. The central nervous system consists of the brain and spinal cord, while the peripheral nervous system consists of nerves that connect the central nervous system to other parts of the body. The brain plays an important role in interpreting the information picked up by the sensory system. It helps in producing a precise response to the stimuli. It also controls bodily functions such as movements, thoughts, speech, and memory. The brain also controls many processes related to homeostasis in the body. The spinal cord connects to the brain through the brainstem. From the brainstem, the spinal cord extends to all the major nerves in the body. The spinal cord is the origin of spinal nerves that branch out to various body parts. These nerves help in receiving and transmitting signals from various body parts. The spinal cord helps in reflex actions of the body The smallest unit of the nervous system is the nerve cell, or neuron. Neurons communicate with each other and with other cells by producing and releasing electrochemical signals known as nerve impulses. Neurons consist of the cell body, the dendrites, and the axon. The cell body consists of a nucleus and cytoplasm. Dendrites are specialized branch-like structures that help in conducting impulses to and from the various body parts. Axons are long, slender extensions of the neuron. Each neuron possesses just a single axon. Its function is to carry the impulses away from the cell body to other neurons. The Circulatory System — The circulatory (or cardiovascular) system is composed of the heart, arteries, veins, and capillaries. The circulatory system is responsible for transporting blood to and from the lungs so that gas exchange can take place. As the circulatory system pumps blood throughout the body, dissolved nutrients and wastes are also delivered to their destinations. The heart is a muscular organ roughly the size of an adult human's closed fist. It is present behind the breastbone, slightly to the left. It consists of four chambers: right atrium, left atrium, right ventricle, and left ventricle. The heart receives deoxygenated blood from the body and pumps this blood to the lugs, where it is oxygenated. The oxygen-rich blood reenters the heart and is then pumped back through the body. The circulatory system is responsible for transporting blood to and from the lungs so that gas exchange can take place. As the circulatory system pumps blood throughout the body, dissolved nutrients and wastes are also delivered to their destinations. Blood circulation takes place through blood vessels. Blood vessels are tubular structures that form a network within the body and transport blood to each tissue. There are three major types of blood vessels: veins, arteries, and capillaries. Veins carry deoxygenated blood from the body to the heart, except for pulmonary veins, which carry oxygenated blood from the lungs to the heart. Arteries carry oxygenated blood from the heart to different organs, except for the pulmonary artery, which carries deoxygenated blood from the heart to the lungs. The arteries branch out to form capillaries. These capillaries are thin-walled vessels through which nutrients and wastes are exchanged with cells. The Respiratory System — The main structures of the respiratory system are the trachea (windpipe), the lungs, and the diaphragm. When the diaphragm contracts, it creates a vacuum in the lungs that causes them to fill with air. During this inhalation, oxygen diffuses into the circulatory system while carbon dioxide diffuses out into the air that will be exhaled. The trachea branches out into two primary bronchi. Each bronchus is further divided into numerous secondary bronchi. These secondary bronchi further branch into tertiary bronchi. Finally, each tertiary bronchus branches into numerous bronchioles. Each bronchiole terminates into a tiny, sac-like structure known as an alveolus. The walls of each alveolus are thin and contain numerous blood capillaries. The process of gaseous exchange occurs in these alveoli. The diaphragm is a dome-shaped muscle situated at the lower end of the rib cage. It separates the abdominal cavity from the chest cavity. During inhalation, the diaphragm contracts, and the chest cavity enlarges, creating a vacuum that allows air to be drawn in. This causes the alveoli in the lungs to expand with air. During this process, oxygen diffuses into the circulatory system while carbon dioxide diffuses out into the air that will be exhaled. On the other hand, expansion of the diaphragm causes exhalation of air containing carbon dioxide. The Digestive System — The digestive system consists of the mouth, stomach, small intestine, large intestine, and anus. It is responsible for taking in food, digesting it to extract energy and nutrients that cells can use to function, and expelling the remaining waste material. Mechanical and chemical digestion takes place in the mouth and stomach, while absorption of nutrients and water takes place in the intestines. The digestive system begins at the mouth, where food is taken in, and ends at the anus, where waste is expelled. The food taken into the mouth breaks into pieces by the grinding action of the teeth. Carbohydrate digestion starts in the mouth with the breakdown of carbohydrates into simple sugars with the help of salivary enzymes. The chewed food, known as a bolus, enters the stomach through the esophagus. The bolus mixes with acids and enzymes released by the stomach. Protein digestion starts in the stomach as proteins are broken down into peptides. This partially digested food is known as chyme. Chyme enters the small intestine and mixes with bile, a substance secreted by the liver, along with enzymes secreted by the pancreas. The digestion of fats starts in the small intestine as bile and pancreatic enzymes break down fats into fatty acids. The surface of the small intestine consists of hair-like projections known as villi. These villi help in absorbing nutrients from the digested food. The digested food enters the large intestine, or colon, where water and salts are reabsorbed. Any undigested food is expelled out of the body as waste. The Skeletal System — The skeletal system is made up of over 200 bones. It protects the body's internal organs, provides support for the body and gives it shape, and works with the muscular system to move the body. In addition, bones can store calcium and produce red and white blood cells. The Muscular System — The muscular system includes more than 650 tough, elastic pieces of tissue. The primary function of any muscle tissue is movement. This includes the movement of blood through the arteries, the movement of food through the digestive tract, and the movement of arms and legs through space. Skeletal muscles relax and contract to move the bones of the skeletal system. The Excretory System — The excretory system removes excess water, dangerous substances, and wastes from the body. The excretory system also plays an important role in maintaining body equilibrium, or homeostasis. The human excretory system includes the lungs, sweat glands in the skin, and the urinary system (such as the kidneys and the bladder). The body uses oxygen for metabolic processes. Oxygen metabolism results in the production of carbon dioxide, which is a waste matter. The lungs expel carbon dioxide through the mouth and nose. The liver converts toxic metabolic wastes, such as ammonia, into less harmful susbtances. Ammonia is converted to urea, which is then excreted in the urine. The skin also expels urea and small amounts of ammonia through sweat. The skin is embedded with sweat glands. These glands secrete sweat, a solution of water, salt, and wastes. The sweat rises to the skin's surface, where it evaporates. The skin maintains homeostasis by producing sweat in hot environments. Sweat production cools and prevents excessive heating of the body. Each kidney contains about a million tiny structures called nephrons, which filter the blood and collect waste products, such as urea, salts, and excess water that go on to become urine. The Endocrine System — The endocrine system is involved with the control of body processes such as fluid balance, growth, and sexual development. The endocrine system controls these processes through hormones, which are produced by endocrine glands. Some endocrine glands include the pituitary gland, thyroid gland, parathyroid gland, adrenal glands, thymus gland, ovaries in females, and testes in males. The Immune System — The immune system is a network of cells, tissues, and organs that defends the body against foreign invaders. The immune system uses antibodies and specialized cells, such as T-cells, to defend the body from microorganisms that cause disease. The Reproductive System — The reproductive system includes structures, such as the uterus and fallopian tubes in females and the penis and testes in males, that allow humans to produce new offspring. The reproductive system also controls certain hormones in the human body that regulate the development of sexual characteristics and determine when the body is able to reproduce. The Integumentary System — The integumentary system is made up of a person's skin, hair, and nails. The skin acts as a barrier to the outside world by keeping moisture in the body and foreign substances out of the body. Nerves in the skin act as an interface with the outside world, helping to regulate important aspects of homeostasis, such as body temperature. Interacting Organ Systems The organ systems work together to perform complex bodily functions. The functions of regulation, nutrient absorption, defense, and reproduction are only possible because of the interaction of multiple body systems. Regulation All living organisms must maintain homeostasis, a stable internal environment. Organisms maintain homeostasis by monitoring internal conditions and making adjustments to the body systems as necessary. For example, as body temperature increases, skin receptors and receptors in a region of the brain called the hypothalamus sense the change. The change triggers the nervous system to send signals to the integumentary and circulatory systems. These signals cause the skin to sweat and blood vessels close to the surface of the skin to dilate, actions which dispel heat to decrease body temperature. Both the nervous system and the endocrine system are typically involved in the maintenance of homeostasis. The nervous system receives and processes stimuli, and then it sends signals to body structures to coordinate a response. The endocrine system helps regulate the response through the release of hormones, which travel through the circulatory system to their site of action. For example, the endocrine system regulates the level of sugar in the blood by the release of the hormones insulin, which stimulates uptake of glucose by cells, and glucagon, which stimulates the release of glucose by the liver. The nervous and endocrine systems interact with the excretory system in the process of osmoregulation, the homeostatic regulation of water and fluid balance in the body. The excretory system expels excess water, salts, and waste products. The excretion of excessive amounts of water can be harmful to the body because it reduces blood pressure. If the nervous system detects a decrease in blood pressure, it stimulates the endocrine system to release antidiuretic hormone. This hormone decreases the amount of water released by the kidneys to ensure appropriate blood pressure. Appropriate levels of carbon dioxide in the blood are also maintained by homeostatic mechanisms that involve several organ systems. Excess carbon dioxide, a byproduct of cellular respiration, can be harmful to an organism. As blood circulates throughout the body, it picks up carbon dioxide waste from cells and transports it to the lungs, where it is exhaled while fresh oxygen is inhaled. If the concentration of carbon dioxide in the blood increases above a certain threshold, the nervous system directs the lungs to increase their respiration rate to remove the excess carbon dioxide, which ensures that the levels of carbon dioxide in the blood are maintained at appropriate levels. In this way, the circulatory, respiratory, and nervous systems work together to limit the level of carbon dioxide in the blood. Nutrient Absorption To absorb nutrients from food, the nervous, digestive, muscular, excretory, and circulatory systems all interact. The nervous system controls the intake of food and regulates the muscular action of chewing, which mechanically breaks down food. As food travels through the stomach and intestines, the digestive system structures release enzymes to stimulate its chemical breakdown. At the same time, the muscular action, called peristalsis, of the muscles in the wall of the stomach help churn the food and push it through the digestive tract. In the intestines, nutrients from food travel across the surfaces of the villi. The nutrients are then picked up by the blood, and the circulatory system transports the nutrients throughout the cells of the body. The endocrine system releases hormones, such as insulin, that control the rate at which certain body cells use nutrients. Any excess minerals, such as calcium, in the blood are deposited in and stored by the skeletal system. Waste products produced by the use of nutrients, as well as the leftover solid waste from the digestion of food, exit the body through the excretory system. Throughout the process of nutrient absorption, the nervous system controls the muscles involved in digestion, circulation, and excretion. Defense Several body systems interact to defend the body from external threats. The body's first line of defense is the integumentary system, which provide a physical barrier that prevents pathogens from entering the body. The skin of the integumentary system also contains receptors for pain, temperature, and pressure. If an unpleasant stimulus is encountered, these receptors send signals to the central nervous system. In response, the central nervous system sends commands to the muscles to move the body part away from the stimulus. In this way, the integumentary, nervous, and muscular systems interact to prevent damage to the body. In the event of a break in the skin, the nervous, immune, lymphatic, and circulatory systems work together to repair the wound and protect the body from pathogens. When the skin is broken, specialized blood cells called platelets form a clot to stop the bleeding. These platelets also release chemicals that travel through the circulatory system and recruit cells, like immune system cells, to repair the wound. These immune cells, or white blood cells, are transported by the circulatory and lymphatic systems to the site of the wound, where they identify and destroy potentially pathogenic cells to prevent an infection. Some lymphocytes, white blood cells produced by the lymphatic system, also produce antibodies to neutralize specific pathogens. All of the white blood cells involved in the body's response were originally produced in the bone marrow of the skeletal system. If an infection does occur
Updated 6d ago
flashcards Flashcards (10)
Chapter 6: Adolescence Growth in Adolescence Puberty is a period of rapid growth and sexual maturation. These changes begin sometime l between eight and fourteen. Girls begin puberty at around ten years of age and boys begin approximately two years later. Pubertal changes take around three to four years to complete. Adolescents experience an overall physical growth spurt. The growth proceeds from the extremities toward the torso. This is referred to as distalproximal development. First the hands grow, then the arms, hand finally the torso. The overall physical growth spurt results in 10-11 inches of added height and 50 to 75 pounds of increased weight. The head begins to grow sometime after the feet have gone through their period of growth. Growth of the head is preceded by growth of the ears, nose, and lips. The difference in these patterns of growth result in adolescents appearing awkward and out-of-proportion. As the torso grows, so do the internal organs. The heart and lungs experience dramatic growth during this period. During childhood, boys and girls are quite similar in height and weight. However, gender differences become apparent during adolescence. From approximately age ten to fourteen, the average girl is taller, but not heavier, than the average boy. After that, the average boy becomes 223 both taller and heavier, although individual differences are certainly noted. As adolescents physically mature, weight differences are more noteworthy than height differences. At eighteen years of age, those that are heaviest weigh almost twice as much as the lightest, but the tallest teens are only about 10% taller than the shortest (Seifert, 2012). Both height and weight can certainly be sensitive issues for some teenagers. Most modern societies, and the teenagers in them, tend to favor relatively short women and tall men, as well as a somewhat thin body build, especially for girls and women. Yet, neither socially preferred height nor thinness is the destiny for many individuals. Being overweight, in particular, has become a common, serious problem in modern society due to the prevalence of diets high in fat and lifestyles low in activity (Tartamella et al., 2004). The educational system has, unfortunately, contributed to the problem as well by gradually restricting the number of physical education courses and classes in the past two decades. Average height and weight are also related somewhat to racial and ethnic background. In general, children of Asian background tend to be slightly shorter than children of European and North American background. The latter in turn tend to be shorter than children from African societies (Eveleth & Tanner, 1990). Body shape differs slightly as well, though the differences are not always visible until after puberty. Asian background youth tend to have arms and legs that are a bit short relative to their torsos, and African background youth tend to have relatively long arms and legs. The differences are only averages, as there are large individual differences as well. Sexual Development Typically, the growth spurt is followed by the development of sexual maturity. Sexual changes are divided into two categories: Primary sexual characteristics and secondary sexual characteristics. Primary sexual characteristics are changes in the reproductive organs. For males, this includes growth of the testes, penis, scrotum, and spermarche or first ejaculation of semen. This occurs between 11 and 15 years of age. For females, primary characteristics include growth of the uterus and menarche or the first menstrual period. The female gametes, which are stored in the ovaries, are present at birth, but are immature. Each ovary contains about 400,000 gametes, but only 500 will become mature eggs (Crooks & Baur, 2007). Beginning at puberty, one ovum ripens and is released about every 28 days during the menstrual cycle. Stress and higher percentage of body fat can bring menstruation at younger ages. Male Anatomy: Males have both internal and external genitalia that are responsible for procreation and sexual intercourse. Males produce their sperm on a cycle, and unlike the female's ovulation cycle, the male sperm production cycle is constantly producing millions of sperm daily. The main male sex organs are the penis and the testicles, the latter of which produce semen and sperm. The semen and sperm, as a result of sexual intercourse, can fertilize an ovum in the female's body; the fertilized ovum (zygote) develops into a fetus which is later born as a child. Female Anatomy: Female external genitalia is collectively known as the vulva, which includes the mons veneris, labia majora, labia minora, clitoris, vaginal opening, and urethral opening. Female internal reproductive organs consist of the vagina, uterus, fallopian tubes, and ovaries. The uterus hosts the developing fetus, produces vaginal and uterine secretions, and passes the male's sperm through to the fallopian tubes while the ovaries release the eggs. A female is born with all her eggs already produced. The vagina is attached to the uterus through the cervix, while the uterus is attached to the ovaries via the fallopian tubes. Females have a monthly reproductive cycle; at certain intervals the ovaries release an egg, which passes through the fallopian tube into the uterus. If, in this transit, it meets with sperm, the sperm might penetrate and merge with the egg, fertilizing it. If not fertilized, the egg is flushed out of the system through menstruation. Secondary sexual characteristics are visible physical changes not directly linked to reproduction but signal sexual maturity. For males this includes broader shoulders and a lower voice as the larynx grows. Hair becomes coarser and darker, and hair growth occurs in the pubic area, under the arms and on the face. For females, breast development occurs around age 10, although full development takes several years. Hips broaden, and pubic and underarm hair develops and also becomes darker and coarser. Acne: An unpleasant consequence of the hormonal changes in puberty is acne, defined as pimples on the skin due to overactive sebaceous (oil-producing) glands (Dolgin, 2011). These glands develop at a greater speed than the skin ducts that discharges the oil. Consequently, the ducts can become blocked with dead skin and acne will develop. According to the University of California at Los Angeles Medical Center (2000), approximately 85% of adolescents develop acne, and boys develop acne more than girls because of greater levels of testosterone in their systems (Dolgin, 2011). Experiencing acne can lead the adolescent to withdraw socially, especially if they are self-conscious about their skin or teased (Goodman, 2006). Effects of Pubertal Age: The age of puberty is getting younger for children throughout the world. According to Euling et al. (2008) data are sufficient to suggest a trend toward an earlier breast development onset and menarche in girls. A century ago the average age of a girl’s first period in the United States and Europe was 16, while today it is around 13. Because there is no clear marker of puberty for boys, it is harder to determine if boys are maturing earlier too. In addition to better nutrition, less positive reasons associated with early puberty for girls include increased stress, obesity, and endocrine disrupting chemicals. Cultural differences are noted with Asian-American girls, on average, developing last, while African American girls enter puberty the earliest. Hispanic girls start puberty the second earliest, while European-American girls rank third in their age of starting puberty. Although African American girls are typically the first to develop, they are less likely to experience negative consequences of early puberty when compared to European-American girls (Weir, 2016). Research has demonstrated mental health problems linked to children who begin puberty earlier than their peers. For girls, early puberty is associated with depression, substance use, eating disorders, disruptive behavior disorders, and early sexual behavior (Graber, 2013). Early maturing girls demonstrate more anxiety and less confidence in their relationships with family and friends, and they compare themselves more negatively to their peers (Weir, 2016). Problems with early puberty seem to be due to the mismatch between the child’s appearance and the way she acts and thinks. Adults especially may assume the child is more capable than she actually is, and parents might grant more freedom than the child’s age would indicate. For girls, the emphasis on physical attractiveness and sexuality is emphasized at puberty and they may lack effective coping strategies to deal with the attention they may receive. 226 Figure 6.4 Source Additionally, mental health problems are more likely to occur when the child is among the first in his or her peer group to develop. Because the preadolescent time is one of not wanting to appear different, early developing children stand out among their peer group and gravitate toward those who are older. For girls, this results in them interacting with older peers who engage in risky behaviors such as substance use and early sexual behavior (Weir, 2016). Boys also see changes in their emotional functioning at puberty. According to Mendle, Harden, Brooks-Gunn, and Graber (2010), while most boys experienced a decrease in depressive symptoms during puberty, boys who began puberty earlier and exhibited a rapid tempo, or a fast rate of change, actually increased in depressive symptoms. The effects of pubertal tempo were stronger than those of pubertal timing, suggesting that rapid pubertal change in boys may be a more important risk factor than the timing of development. In a further study to better analyze the reasons for this change, Mendle et al. (2012) found that both early maturing boys and rapidly maturing boys displayed decrements in the quality of their peer relationships as they moved into early adolescence, whereas boys with more typical timing and tempo development actually experienced improvements in peer relationships. The researchers concluded that the transition in peer relationships may be especially challenging for boys whose pubertal maturation differs significantly from those of others their age. Consequences for boys attaining early puberty were increased odds of cigarette, alcohol, or another drug use (Dudovitz, et al., 2015). Gender Role Intensification: At about the same time that puberty accentuates gender, role differences also accentuate for at least some teenagers. Some girls who excelled at math or science in elementary school, may curb their enthusiasm and displays of success at these subjects for fear of limiting their popularity or attractiveness as girls (Taylor et al/, 1995; Sadker, 2004). Some boys who were not especially interested in sports previously may begin dedicating themselves to athletics to affirm their masculinity in the eyes of others. Some boys and girls who once worked together successfully on class projects may no longer feel comfortable doing so, or alternatively may now seek to be working partners, but for social rather than academic reasons. Such changes do not affect all youngsters equally, nor affect any one youngster equally on all occasions. An individual may act like a young adult on one day, but more like a child the next. Adolescent Brain The brain undergoes dramatic changes during adolescence. Although it does not get larger, it matures by becoming more interconnected and specialized (Giedd, 2015). The myelination and 227 development of connections between neurons continues. This results in an increase in the white matter of the brain and allows the adolescent to make significant improvements in their thinking and processing skills. Different brain areas become myelinated at different times. For example, the brain’s language areas undergo myelination during the first 13 years. Completed insulation of the axons consolidates these language skills but makes it more difficult to learn a second language. With greater myelination, however, comes diminished plasticity as a myelin coating inhibits the growth of new connections (Dobbs, 2012). Even as the connections between neurons are strengthened, synaptic pruning occurs more than during childhood as the brain adapts to changes in the environment. This synaptic pruning causes the gray matter of the brain, or the cortex, to become thinner but more efficient (Dobbs, 2012). The corpus callosum, which connects the two hemispheres, continues to thicken allowing for stronger connections between brain areas. Additionally, the hippocampus becomes more strongly connected to the frontal lobes, allowing for greater integration of memory and experiences into our decision making. The limbic system, which regulates emotion and reward, is linked to the hormonal changes that occur at puberty. The limbic system is also related to novelty seeking and a shift toward interacting with peers. In contrast, the prefrontal cortex which is involved in the control of impulses, organization, planning, and making good decisions, does not fully develop until the mid-20s. According to Giedd (2015) the significant aspect of the later developing prefrontal cortex and early development of the limbic system is the “mismatch” in timing between the two. The approximately ten years that separates the development of these two brain areas can result in risky behavior, poor decision making, and weak emotional control for the adolescent. When puberty begins earlier, this mismatch extends even further. Teens often take more risks than adults and according to research it is because they weigh risks and rewards differently than adults do (Dobbs, 2012). For adolescents the brain’s sensitivity to the neurotransmitter dopamine peaks, and dopamine is involved in reward circuits, so the possible rewards outweighs the risks. Adolescents respond especially strongly to social rewards during activities, and they prefer the company of others their same age. Chein et al. (2011) found that peers sensitize brain regions associated with potential rewards. For example, adolescent drivers make risky driving decisions when with friends to impress them, and teens are much more likely to commit crimes together in comparison to adults (30 and older) who commit them alone (Steinberg et al., 2017). In addition to dopamine, the adolescent brain is affected by oxytocin which facilitates bonding and makes social connections more rewarding. With both dopamine and oxytocin engaged, it is no wonder that adolescents seek peers and excitement in their lives that could end up actually harming them. 228 Because of all the changes that occur in the adolescent brain, the chances for abnormal development can occur, including mental illness. In fact, 50% of the mental illness occurs by the age 14 and 75% occurs by age 24 (Giedd, 2015). Additionally, during this period of development the adolescent brain is especially vulnerable to damage from drug exposure. For example, repeated exposure to marijuana can affect cellular activity in the endocannabinoid system. Consequently, adolescents are more sensitive to the effects of repeated marijuana exposure (Weir, 2015). However, researchers have also focused on the highly adaptive qualities of the adolescent brain which allow the adolescent to move away from the family towards the outside world (Dobbs, 2012; Giedd, 2015). Novelty seeking and risk taking can generate positive outcomes including meeting new people and seeking out new situations. Separating from the family and moving into new relationships and different experiences are actually quite adaptive for society. Adolescent Sleep According to the National Sleep Foundation (NSF) (2016), adolescents need about 8 to 10 hours of sleep each night to function best. The most recent Sleep in America poll in 2006 indicated that adolescents between sixth and twelfth grade were not getting the recommended amount of sleep. On average adolescents only received 7 ½ hours of sleep per night on school nights with younger adolescents getting more than older ones (8.4 hours for sixth graders and only 6.9 hours for those in twelfth grade). For the older adolescents, only about one in ten (9%) get an optimal amount of sleep, and they are more likely to experience negative consequences the following day. These include feeling too tired or sleepy, being cranky or irritable, falling asleep in school, having a depressed mood, and drinking caffeinated beverages (NSF, 2016). Additionally, they are at risk for substance abuse, car crashes, poor academic performance, obesity, and a weakened immune system (Weintraub, 2016). Troxel et al. (2019) found that insufficient sleep in adolescents is a predictor of risky sexual behaviors. Reasons given for this include that those adolescents who stay out late, typically without parental supervision, are more likely to engage in a variety of risky behaviors, including risky sex, such as not using birth control or using substances before/during sex. An alternative explanation for risky sexual behavior is that the lack of sleep negatively affects impulsivity and decision-making processes. Figure 6.7 Source Why do adolescents not get adequate sleep? In addition to known environmental and social factors, including work, homework, media, technology, and socializing, the adolescent brain is also a factor. As adolescent go through puberty, their circadian rhythms change and push back their sleep time until later in the evening (Weintraub, 2016). This biological change not only keeps adolescents awake at night, it makes it difficult for them to wake up. When they are awake too early, their brains do not function optimally. Impairments are noted in attention, academic achievement, and behavior while increases in tardiness and absenteeism are also seen. 229 To support adolescents’ later sleeping schedule, the Centers for Disease Control and Prevention recommended that school not begin any earlier than 8:30 a.m. Unfortunately, over 80% of American schools begin their day earlier than 8:30 a.m. with an average start time of 8:03 a.m. (Weintraub, 2016). Psychologists and other professionals have been advocating for later school times, and they have produced research demonstrating better student outcomes for later start times. More middle and high schools have changed their start times to better reflect the sleep research. However, the logistics of changing start times and bus schedules are proving too difficult for some schools leaving many adolescent vulnerable to the negative consequences of sleep deprivation. Troxel et al. (2019) cautions that adolescents should find a middle ground between sleeping too little during the school week and too much during the weekends. Keeping consistent sleep schedules of too little sleep will result in sleep deprivation but oversleeping on weekends can affect the natural biological sleep cycle making it harder to sleep on weekdays. Adolescent Sexual Activity By about age ten or eleven, most children experience increased sexual attraction to others that affects social life, both in school and out (McClintock & Herdt, 1996). By the end of high school, more than half of boys and girls report having experienced sexual intercourse at least once, though it is hard to be certain of the proportion because of the sensitivity and privacy of the information. (Center for Disease Control, 2004; Rosenbaum, 2006). Adolescent Pregnancy: As can be seen in Figure 6.8, in 2018 females aged 15–19 years experienced a birth rate (live births) of 17.4 per 1,000 women. The birth rate for teenagers has declined by 58% since 2007 and 72% since 1991, the most recent peak (Hamilton, Joyce, Martin, & Osterman, 2019). It appears that adolescents seem to be less sexually active than in previous years, and those who are sexually active seem to be using birth control (CDC, 2016). Figure 6.8 Source Risk Factors for Adolescent Pregnancy: Miller et al. (2001) found that parent/child closeness, parental supervision, and parents' values against teen intercourse (or unprotected intercourse) decreased the risk of adolescent pregnancy. In contrast, residing in disorganized/dangerous neighborhoods, living in a lower SES family, living with a single parent, having older sexually 230 active siblings or pregnant/parenting teenage sisters, early puberty, and being a victim of sexual abuse place adolescents at an increased risk of adolescent pregnancy. Consequences of Adolescent Pregnancy: After the child is born life can be difficult for a teenage mother. Only 40% of teenagers who have children before age 18 graduate from high school. Without a high school degree her job prospects are limited, and economic independence is difficult. Teen mothers are more likely to live in poverty, and more than 75% of all unmarried teen mother receive public assistance within 5 years of the birth of their first child. Approximately, 64% of children born to an unmarried teenage high-school dropout live in poverty. Further, a child born to a teenage mother is 50% more likely to repeat a grade in school and is more likely to perform poorly on standardized tests and drop out before finishing high school (March of Dimes, 2012). Research analyzing the age that men father their first child and how far they complete their education have been summarized by the Pew Research Center (2015) and reflect the research for females. Among dads ages 22 to 44, 70% of those with less than a high school diploma say they fathered their first child before the age of 25. In comparison, less than half (45%) of fathers with some college experience became dads by that age. Additionally, becoming a young father occurs much less for those with a bachelor’s degree or higher as just 14% had their first child prior to age 25. Like men, women with more education are likely to be older when they become mothers. Eating Disorders Figure 6.9 According to the DSM-5-TR (American Psychiatric Association, 2022), eating disorders are characterized by a persistent disturbance of eating or eating-related behavior that results in the altered consumption or absorption of food and that significantly impairs physical health or psychosocial functioning. Although eating disorders can occur in children and adults, they frequently appear during the teen years or young adulthood (National Institute of Mental Health (NIMH), 2016). Eating disorders affect both genders, although rates among women are 2½ times greater than among men. Similar to women who have eating disorders, men also have a distorted sense of body image, including muscle dysmorphia, which is an extreme desire to increase one’s muscularity (Bosson et al., 2019). The prevalence of eating disorders in the United States is similar among Non-Hispanic Whites, Hispanics, African-Americans, and Asians, with the exception that anorexia nervosa is more common among Non-Hispanic Whites (Hudson et al., 2007; Wade et al., 2011). Source Risk Factors for Eating Disorders: Because of the high mortality rate, researchers are looking into the etiology of the disorder and associated risk factors. Researchers are finding that eating disorders are caused by a complex interaction of genetic, biological, behavioral, psychological, and social factors (NIMH, 2016). Eating disorders appear to run in families, and researchers are working to identify DNA variations that are linked to the increased risk of developing eating 231 disorders. Researchers from King’s College London (2019) found that the genetic basis of anorexia overlaps with both metabolic and body measurement traits. The genetic factors also influence physical activity, which may explain the high activity level of those with anorexia. Further, the genetic basis of anorexia overlaps with other psychiatric disorders. Researchers have also found differences in patterns of brain activity in women with eating disorders in comparison with healthy women. The main criteria for the most common eating disorders: Anorexia nervosa, bulimia nervosa, and binge-eating disorder are described in the DSM-5-TR (American Psychiatric Association, 2022) and listed in Table 6.1. Table 6.1 DSM-5-TR Eating Disorders Anorexia Nervosa  Restriction of energy intake leading to a significantly low body weight  Intense fear of gaining weight  Disturbance in one’s self-evaluation regarding body weight Bulimia Nervosa Binge-Eating Disorder  Recurrent episodes of binge eating  Recurrent inappropriate compensatory behaviors to prevent weight gain, including purging, laxatives, fasting or excessive exercise  Self-evaluation is unduly affected by body shape and weight  Recurrent episodes of binge eating  Marked distress regarding binge eating  The binge eating is not associated with the recurrent use of inappropriate compensatory behavior Health Consequences of Eating Disorders: For those suffering from anorexia, health consequences include an abnormally slow heart rate and low blood pressure, which increases the risk for heart failure. Additionally, there is a reduction in bone density (osteoporosis), muscle loss and weakness, severe dehydration, fainting, fatigue, and overall weakness. Anorexia nervosa has the highest mortality rate of any psychiatric disorder (Arcelus et al., 2011). Individuals with this disorder may die from complications associated with starvation, while others die of suicide. In women, suicide is much more common in those with anorexia than with most other mental disorders. The binge and purging cycle of bulimia can affect the digestives system and lead to electrolyte and chemical imbalances that can affect the heart and other major organs. Frequent vomiting can cause inflammation and possible rupture of the esophagus, as well as tooth decay and staining from stomach acids. Lastly, binge eating disorder results in similar health risks to obesity, including high blood pressure, high cholesterol levels, heart disease, Type II diabetes, and gall bladder disease (National Eating Disorders Association, 2016). 232 Figure 6.10 Source Eating Disorders Treatment: To treat eating disorders, adequate nutrition and stopping inappropriate behaviors, such as purging, are the foundations of treatment. Treatment plans are tailored to individual needs and include medical care, nutritional counseling, medications (such as antidepressants), and individual, group, and/or family psychotherapy (NIMH, 2016). For example, the Maudsley Approach has parents of adolescents with anorexia nervosa be actively involved in their child’s treatment, such as assuming responsibility for feeding the child. To eliminate binge eating and purging behaviors, cognitive behavioral therapy (CBT) assists sufferers by identifying distorted thinking patterns and changing inaccurate beliefs
Updated 28d ago
flashcards Flashcards (4)
EXTERNAL AND INTERNAL STRUCTURE OF THE BRAIN STEM DR A. A. NWAKANMA THE BRAINSTEM •The brainstem is made up of the medulla oblongata, pons and midbrain •It is stalklike in shape and connects the narrow spinal cord with the expanded forebrain •Occupies the posterior cranial fossa of the skull Loading… FUNCTIONS OF BRAINSTEM •It serves as a conduit for the ascending and descending tracts connecting the spinal cord to the different parts of the higher centers in the forebrain •It contains important reflex centers associated with the control of respiration and CVS. •It is also associated with the control of consciousness •It contains important nuclei of cranial nerves II through XII EXTERNAL FEATURES OF MEDULLA OBLONGATA • The medulla oblongata connects the pons superiorly with the SC inferiorly •The junction of the medulla and SC is at the origin of the anterior and posterior roots of the first cervical nerve which corresponds approximately to the level of the foramen magnum Loading… EXTERNAL FEATURES OF MEDULLA •The medulla oblongata is piriform in shape •It has a broad superior part – open part •And a lower closed part •The central canal of the SC continues upward into the lower half of the medulla •In the upper half of the medulla it expands as the cavity of the fourth ventricle EXTERNAL FEATURES OF MEDULLA •On the ant. Surface of the medulla is the anterior median fissure which is continous inferiorly with the ant. Median fissure of the SC •On each side of the median fissure is a swelling called the pyramid EXTERNAL FEATURES OF MEDULLA •The pyramids are composed of bundles of nerve fibers, corticospinal fibers which originate in large nerve cells in the precentral gyrus of the cerebral cortex •The pyramids tapers inferiorly and majority of the descending fibers cross over to the opposite side forming the decussation of the pyramids here •The ant. External arcuate fibers are a few nerve fibers that emerge from the ant. Median fissure above the decussation and pass laterally over the medulla oblongata to enter the cerebellum EXTERNAL FEATURES OF MEDULLA •Posterolateral to the pyramids are the OLIVES which are oval elevations produced by the underlying inf. Olivary nuclei •In the groove b/w the pyramid and olive emerges the rootlets of the hypoglossal nerve •Post. To the olives are the inf. Cerebellar peduncles which connect the medulla to the cerebellum EXTERNAL FEATURES OF MEDULLA •In the groove b/w the olive and the inf. Cerebellar peduncle emerges the roots of the glossopharyngeal and vagus nerves and the cranial roots of accessory nerve •The post. Surface of the sup. Half of the medulla forms the lower part of the floor of the 4th ventricle External features of medulla •The post surface of the inf. Half continues with the post. Aspect of the SC and possesses a post. Median sulcus •On each side of the median sulcus is an elongated swelling , the Gracile tubercle produced by the underlying gracile nu. •Lat. To the gracile tubercle is the cuneate tubercle produced by the underlying cuneate nu. Loading… INTERNAL STRUCTURE OF MEDULLA •The internal structure of the medulla oblongata is usually considered at 3 levels •Level of pyramidal decussation •Level of olive •Level of sensory or lemniscal decussation T/S OF MEDULLA AT THE LEVEL OF OLIVE •This level corresponds to the floor of the 4th ventricle and the cranial n. Nuclei seen include •Hypoglossal n. • Vestibular nuclei •Dorsal nu. Of vagus •Solitary tract and its nu. •Nu. Ambigus • dorsal and ventral cochlear nu. T/S OF MEDULLA AT THE LEVEL OF OLIVE •The other masses of gray matter seen at this level include •The medial and dorsal accessory olivary nu. •Lat. Reticular nu. •Arcuate nu. •The descending tracts seen include •Pyramid •Rubrospinal tract •Spinal nu. And •Tract of trigeminal n. T/S OF MEDULLA AT THE LEVEL OF OLIVE •The ascending tracts include •Medial lemniscus lying in the middle and is L shaped •Spinothalamic T •Spinocerbellar T. •Spinotectal T. •The reticular formation and the inf. Olivary nu. Are also prominent features found at this level T/S OF THE MEDULLA AT THE LEVEL OF LEMNISCAL DECUSSATION •The level represented by this section lies a little above the level of the pyramidal decussation •The structures found at this level include •Central canal surrounded by gray matter •Medial lemniscus •The pyramids the nu. And fasciculus cuneatus •Spinal nu. Of trigeminal n. •The reticular formation T/S OF THE MEDULLA AT THE LEVEL OF LEMNISCAL DECUSSATION •Internal arcuate fibers which arise from the nu. Gracilis and cuneatus and arch forward on the medial side of the gray matter crossing in the midline to form the lemniscal or sensory decussation •Accessory cuneate nu. Lying dorsolateral to the cuneate nu. T/S OF THE MEDULLA AT THE LEVEL OF LEMNISCAL DECUSSATION •The cranial nerve nuclei seen at this level include •Hypoglossal nu. •Dorsal motor nu. Of vagus •Arcuate nu. •Nu. Of solitary tract •Nu. Ambigus •Other structures include •Lower part of inf. Olivary nu. •Lat. Reticular nu. •Arcuate nu. •Lat. & ventral spinothalamic tr. •Doral and ventral spinocerebella tr. •Spino-olivary tr. •Pyramids •Vestibulospinal tr. •Corticospinal tr. •Medial longitudinal fasciculus Connections of the Inferior Olivary Complex • The main afferents of the inferior olivary nucleus are from the cerebral cortex and from the spinal cord • The main efferents are to the cerebellar cortex. • An olivospinal tract is traditionally described, but some authorities hold that the inferior olivary nuclei do not send any fibres to the spinal cord. •The nucleus may be regarded as a relay station on the cortico-olivo-cerebellar and spino-olivo-cerebellar pathways. • The accessory olivary nuclei are connected to the cerebellum by parolivo-cerebellar fibres. THE PONS •The pons is the middle part of the brainstem •Its continuous below with the medulla oblongata and above with the midbrain •It is seperated from the cerbellum by the 4th ventricle •Pons has two surfaces: •Ventral and dorsal External Features Of Ventral Surface Of Pons •The ventral surface of pons shows the following features •The ventral surface is convex and has a shallow groove in the midline called the basilar groove which lodges basillar artery •Transvesely running fibers connecting the pons to the cerebellum thru the middle cerebellar peduncle •The two roots of trigeminal nerve (sensory and motor) emerge at the jxn b/w the ventral surface of pons and middle cerebellar peduncle EXTERNAL FEATURES OF DORSAL PONS •The dorsal surface of pons shows the following features •Median sulcus in the median plane •Medial eminence – shows rounded elevation in the lower part called facial colliculus which overlies the nu. Of abducent n. •Sulcus limitans – is lat. To the medial eminence and seperates medial eminence from vestibular area T/S THROUGH CAUDAL PART OF PONS •The features seen at this level include •Medial lemniscus in the most ant. Part of the tegmentum •The facial nu. Lies post to the lat. Part of the medial lemniscus •The fibers of the facial nerve wind around the nu. Of the abducent nerve producing the facial colliculus T/S THROUGH CAUDAL PART OF PONS •The medial longitudinal fasciculus is situated beneath the floor of the 4th ventricle on either side of the midline •The medial longitudinal fasciculus is the main pathway that connects the vestibular and cochlear nuclei with the nuclei controlling the extraocular muscles (oculomotor, trochlear and abducent) •The medial vestibular nu. Is situated lat. To the abducent nu. And in close relationship to the inf. Cerebellar peduncle T/S THROUGH CAUDAL PART OF PONS •The sup. Part of the lat. And inf. Part of sup. Vestibular nu. Are found at this level •Post. And ant. Cochlear nu. Are also found at this level •The spinal nu.of trigeminal nerve and tract lie on the anteromedial aspect of the inf. Cerebellar peduncle T/S THROUGH CAUDAL PART OF PONS •The trapezoid body is made up of fibers derived from the cochlear nuclei and the nuclei of trapezoid body •They run transversely in the ant. Part of the tegmentum •The basilar part of the pons at this level contain masses of nervr cells called pontine nuclei T/S THROUGH CAUDAL PART OF PONS •The axons of these cells give origin to the transverse fibers of the pons which cross the midline and intersect the corticospinal and corticonuclear tracts breaking them up into small bundles Loading… INTERNAL STRUCTURE OF CRANIAL PART OF PONS •The internal structure of the cranial part of pons is similar to that seen at the caudal level but contains the motor and principal sensory nuclei of the trigeminal nerve •The motor nu. Of the trigeminal nerve is situated beneath the lat. Part of the 4th ventricle within the reticular formation INTERNAL STRUCTURE OF CRANIAL PART OF PONS •The principal sensory nu. Of the trigeminal nerve is situated lateral to the motor nu. •The sup. Cerebellar peduncle is situated posterolat. To the motor nu. Of trigeminal nerve EXTERNAL FEATURES OF MIDBRAIN •Midbrain measures about 2cm in length and connects the pons and cerebellum with the forebrain •The midbrain is traversed by a narrow channel – the cerebral aqueduct ( which is filled with CSF) •On the posterior surface are four rounded eminences that are divided into superior and inferior pairs •The sup. Colliculi are centers for visual reflexes while the inf. Are lower auditory centers •In the midline below the inf. Colliculi emerges the trochlear nerves EXTERNAL FEATURES OF MIDBRAIN •Each colliculi is related to a ridge called brachium •The sup. Brachium passes from the sup. Colliculus to the lat. Geniculate body and the optic tract •The inf. brachium connects the inf colliculus to the medial geniculate body EXTERNAL FEATURES OF MIDBRAIN •On the anterior aspect of the midbrain is a deep depression in the midline called the interpeduncular fossa which is bounded on either side by the crus cerebri •Many blood vessels perforate the floor of the interpeduncular fossa and this region is termed the post. Perforated substance INTERNAL STRUCTURE OF MIDBRAIN •The midbrain is divided into two parts – •An upper tectum and •A lower part called cerebral peduncles •The upper part (tectum) contains mainly the colliculi of the two sides and represents the dorsal part of the midbrain •The cerebral peduncles are subdivided by the substantia nigra into •The tegmentum and •Crus cerebri STRUCTURE OF MIDBRAIN AT OF INF. COLLICULUS •The structures seen at this level include •Crus cerebri- this contain descending fibers from different parts of the cerebral cortex •The medial 1/6 contain frontopontine fibers •The intemediate 2/3 contain corticospinal and corticonuclear fibers •The lat. 1/6 contain temporopontine fibers •Other structures include •Substantia nigra •Cerebral aqueduct : this is surrounded by the central gray matter. •Ventral to this aqueduct is the oculomotor and trochlear nerves STRUCTURE OF MIDBRAIN AT OF INF. COLLICULUS •Reticular formation b/w the substantia nigra and gray matter •Inferior colliculus •Mesocephalic nu. Of trigeminal nerve •Compact bundle of fibers lies in the tegmentum dorsomedial to the substantia nigra •This bundle consistsof the medial lemniscus, trigeminal lemniscus and spinal lemniscus •Medial longitudinal fasciculus •Superior cerebellar peduncle •Rubrospinal tract Structure of midbrain at the level of sup. colliculus •The following structures are seen at this level •Sup. Colliculus in the tectum •Red nu. In the tegmentum dorsomedial to the substantia nigra •Oculomotor nuclei near the central gray matter •Bundles of ascending fibers consisting of medial lemniscus, spinal lemniscus and trigeminal lemniscus Structure of midbrain at the level of sup. colliculus •Dorsal tegmental decussation : this consists of fibers originating in the sup. Colliculus, it crosses to the opp. Side and descend as the tectospinal tract •Ventral tegmental decussation : this originates in the red nu
Updated 41d ago
flashcards Flashcards (5)
Negative and Positive Feedback Loops Control hormone levelsNegative feedback loopHormone release stops in response to decrease in stimulus- Stimulus (eating) raises blood glucose levels- Pancreas releases insulin in response to elevated blood   glucose- Blood glucose decreases as it is used by the body or  stored in the liver - Insulin release stops as blood glucose levels normalize Positive feedback loop As long as stimulus is present, action of hormone continues- Infant nursing at mother’s breast→stimulates  hypothalamus→stimulates posterior pituitary- Oxytocin released→stimulates milk production  and ejection from mammary glands- Milk release continues as long as infant  continues to nurse The Major Endocrine OrgansThe major endocrine organs of the body include: the pituitary, pineal, thyroid, parathyroid, thymus, and adrenal glands, pancreas, and gonads (ovaries and testes)Endocrine glands - Ductless - Release hormones - Directly into target tissues - Into bloodstream to be carried to target tissuesHormones(Greek word hormone – to set into motion)     Pituitary Gland and Hypothalamus o The pituitary gland is approximately the size of a pea. o It hangs by a stalk from the inferior surface of the hypothalamus of the brain, where it is snugly surrounded by the sella turcica of the sphenoid bone. o It has two functional lobes – the anterior pituitary (glandular tissue) and the posterior pituitary (nervous tissue). o The anterior pituitary gland controls the activity of so many other endocrine glands (“master endocrine gland”) o The release of each of its hormones is controlled by releasing hormones and inhibiting hormones produced by the hypothalamus. o The hypothalamus also makes two additional hormones, oxytocinand antidiuretic hormone, which are transported along the axons of the hypothalamic nuerosecretory cells to the posterior pituitary for storage. They are later released into the blood in response to nerve impulses from the hypothalamus. Oxytocin o Is released in significant amounts only during childbirth and nursing. o It stimulates powerful contractions of the uterine muscle during sexual relations, during labor, and during breastfeeding. o It also causes milk ejection (let-down reflex) in a nursing woman. Antidiuretic Hormone (ADH) o ADH is a chemical that inhibits or prevents urine production. o ADH causes the kidneys to reabsorb more water from the forming urine; as a result, urine volume decreases, and blood volume increases. o In larger amounts, ADH also increases blood pressure by causing constriction of the arterioles (small arteries). For this reason, it is sometimes referred to as vasopressin. Anterior Pituitary HormonesThe anterior pituitary produces several hormones that affect many body organs. Growth Hormone (GH) o Its major effects are directed to the growth of skeletal muscles and long bones of the body o At the same time, it causes fats to be broken down and used for energy while it spares glucose, helping to maintain blood sugar homeostasis. ProlactinIts only known target in humans is the breast.After childbirth, it stimulates and maintains milk production by the mother’s breasts.Gonadotropic Hormones (FSH and LH) o Regulate the hormonal activity of the gonads (ovaries and testes) o In women, the FSH stimulates follicle development in the ovaries. o In men, FSH stimulates sperm production by the testes. o LH triggers ovulation of an egg from the ovary and causes the ruptured follicle to produce progesterone and some estrogen. o LH stimulates testosterone production by the interstitial cells of the testes. Pineal Gland The pineal gland is a small, cone-shaped gland that hangs from the roof of the third ventricle of the brain. Melatonin o The only hormone secreted from pineal gland in substantial amounts o Believed to be a “sleep trigger” that plays an important role in establishing the body’s sleep-wake cycle. o The level of melatonin rises and falls during the course of the day and night. o The peak level occurs at night and makes us drowsy o The lowest level occurs during daylight around noon. Thyroid Gland • The thyroid gland is located at the base of the throat, just inferior to the Adam’s apple. • It is a fairly large gland consisting of two lobes joined by a central mass, or isthmus. • The thyroid gland makes two hormones, one called thyroid hormone, the other called calcitonin. Thyroid Hormone o Referred to as body’s major metabolic hormone o Contains two active iodine-containing hormones, thyroxine (T4)and thriiodothyronine (T3) o Most triiodothyronine is formed at the target tissues by conversion of thyronine to triiodothyronine o Thyroid hormone controls the rate at which glucose is “burned”, or oxidized, and converted to body heat and chemical energy (ATP). o Thyroid hormone is also important for normal tissue growth and development, especially in the reproductive and nervous systems. Homeostatic Imbalance ➢ Without iodine, functional thyroid hormones cannot be made. ➢ The source of iodine is our diet (seafoods) ➢ Goiter is an enlargement of the thyroid gland that results when the diet is deficient in iodine. Hyposecretion of thyroxine may indicate problems other than iodine deficiency. If it occurs in early childhood, the result is cretinism. ▪ Results in dwarfism and mental retardation (if discovered early, hormone replacement will prevent mental impairment) Hypothyroidism occurring in adults results in myxedema ▪ Characterized by both physical and mental sluggishness (no mental impairment) ▪ Other signs are puffiness of the face, fatigue, poor muscle tone, low body temperature, obesity, and dry skin (Oral thyroxine is prescribed to treat this condition)   ➢ Hyperthyroidism generally results from a tumor of the thyroid gland. ➢ Extreme overproduction of thyroxine results in a high basal metabolic rate, intolerance of heat, rapid heartbeat, weight loss, nervous and agitated behavior, and a general inability to relax. Graves’ disease o A form of hyperthyroidism o The thyroid gland enlarges, the eyes bulge (exophthalmos) Calcitonin ➢ Second important hormone product of the thyroid gland ➢ Decreases the blood calcium ion level by causing calcium to be deposited in the bones Parathyroid Glands ➢ The parathyroid glands are tiny masses of glandular tissue most often on the posterior surface of the thyroid gland. ➢ Parathyroid hormone (PTH) is the most important regulator of calcium ion homeostasis of the blood. ➢ Although the skeleton is the major PTH target, PTH also stimulates the kidneys and intestine to absorb more calcium ions. Homeostatic Imbalance o If blood calcium ion level falls too low, neurons become extremely irritable and overactive. They deliver impulses to the muscles so rapidly that the muscles go into uncontrollable spasms (tetany), which may be fatal. o Severe hyperparathyroidism causes massive bone destruction. The bones become very fragile, and spontaneous fractures begin to occur. Thymus o Is located in the upper thorax, posterior to the sternum. o Large in infants and children, it decreases in size throughout adulthood. o By old age, it is composed mostly of fibrous connective tissue and fat. o The thymus produces a hormone called thymosin and others that appear to be essential for normal development of a special group of white blood cells (T lymphocytes) and the immune response. Adrenal Glands o The two adrenal glands curve over the top of the kidneys like triangular hats. o It is structurally and functionally two endocrine organs in one.   • it has parts made of glandular (cortex) and neural tissue (medulla) • The central medulla region is enclosed by the adrenal cortex, which contains three separate layers of cells. Hormones of the Adrenal CortexThe adrenal cortex produces three major groups of steroid hormones, collectively called corticosteroids: 1. Mineralocorticoids (aldosterone) ➢ Are produced by the outermost adrenal cortex cell layer. ➢ Are important in regulating the mineral (salt) content of the blood, particularly the concentrations of sodium and potassium ions. ➢ These hormones target the kidney tubules(Distal Convulating Kidney Tubles) that selectively reabsorb the minerals or allow them to be flushed out of the body in urine. ➢ When the blood level of aldosterone rises, the kidney tubule cell reabsorb increasing amounts of sodium ions and secrete more potassium ions into the urine. ➢ When sodium is reabsorbed, water follows. Thus, the mineralocorticoids help regulate both water and electrolyte balance in body fluids. 2. Glucocorticoids (Cortisone and Cortisol)  ➢ Glucocorticoids promote normal cell metabolism and help the body to resist long-term stressors, primarily by increasing the blood glucose level. ➢ When blood levels of glucocorticoids are high, fats and even proteins are broken down by body cells and converted to glucose, which is released to the blood. ➢ For this reason, glucocorticoids are said to be hyperglycemic hormones. ➢ Glucocorticoids also seem to control the more unpleasant effects of inflammation by decreasing edema, and they reduce pain by inhibiting the pain-causing prostaglandins. ➢ Because of their anti-inflammatory properties, glucocorticoids are often prescribed as drugs to suppress inflammation for patients with rheumatoid arthritis. ➢ Glucocorticoids are released from the adrenal cortex in response to a rising blood level of ACTH (Adrenocorticotropic hormone). 3. Sex Hormones ➢ In both men and women, the adrenal cortex produces both male and female sex hormones throughout life in relatively small amounts. ➢ The bulk of the sex hormones produced by the innermost cortex layer are androgens (male sex hormones), but some estrogens (female sex hormones) are also formed. Homeostatic Imbalance1. Addisson’s disease (hyposecretion of all the adrenal cortex hormones) ✓ Bronze tone of the skin (suntan) ✓ Na (sodium) and water are lost from the body ✓ Muscles become weak and shock is a possibility ✓ Hypoglycemia (↓ glucocorticoids) ✓ Suppression of the immune system 2. Hyperaldosteronism (hyperactivity of the outermost cortical area) ✓ Excessive water and sodium ions retention ✓ High blood pressure ✓ Edema ✓ Low potassium ions level (hypokalemia) 3. Cushing’s Syndrome (Excessive glucocorticoids) ✓ Swollen “moon face” and “Buffalo hump” ✓ High blood pressure and hyperglycemia (steroid diabetes) ✓ Weakening of the bones (as protein is withdrawn to be converted to glucose) ✓ Severe depression of the immune system 4. Hypersecretion of the sex hormones leads to masculinization, regardless of sex. Hormones of the Adrenal Medulla ➢ When the medulla is stimulated by sympathetic nervous system neurons, its cells release two similar hormones, epinephrine(adrenaline) and norepinephrine (noradrenaline), into the bloodstream. ➢ Collectively, these hormones are called catecholamines. ➢ The catecholamines of the adrenal medulla prepare the body to cope with short-term stressful situations and cause the so-called alarm stage of the stress response. ➢ Glucocorticoids, by contrast, are produced by the adrenal cortex and are important when coping with prolonged or continuing stressors, such as dealing with the death of a family member or having a major operation (resistance stage). Pancreatic Islets ➢ The pancreas, located close to the stomach in the abdominal cavity, is a mixed gland. ➢ The pancreatic islets, also called the islets of Langerhans, are little masses of endocrine (hormone-producing) tissue of the pancreas. ➢ The exocrine, or acinar, part of the pancreas acts as part of the digestive system. ➢ Two important hormones produced by the islet cells are insulin and glucagon. Insulin ➢ Hormone released by the beta cells of the islets in response to a high level of blood glucose. ➢ Acts on all body cells, increasing their ability to import glucose across their plasma membranes. ➢ Insulin also speeds up these “use it” or “store it” activities. ➢ Because insulin sweeps the glucose out of the blood, its effect is said to be hypoglycemic. ➢ Without it, essentially no glucose can get into the cells to be used. Glucagon ➢ Acts as an antagonist of insulin ➢ Released by the alpha cells of the islets in response to a low blood glucose levels. ➢ Its action is basically hyperglycemic. ➢ Its primary target is the liver, which it stimulates to break down stored glycogen to glucose and to release the glucose into the blood. Gonads ➢ The female and male gonads produce sex cells. ➢ They also produce sex hormones that are identical to those produced by adrenal cortex cells. ➢ The major differences from the adrenal sex hormone production are the source and relative amounts of hormones produced. Hormones of the OvariesBesides producing female sex cells (ova, or eggs), ovaries produce two groups of steroid hormones, estrogens and progesterone. 1. Estrogen (Steroid Hormone) ➢ Responsible for the development of sex characteristics in women (primarily growth and maturation of the reproductive organs) and the appearance of secondary sex characteristics at puberty. ➢ Acting with progesterone, estrogens promote breast development and cyclic changes in the uterine lining (the menstrual cycle) 2. Progesterone (Steroid Hormone) ➢ Acts with estrogen to bring about the menstrual cycle. ➢ During pregnancy, it quiets the muscles of the uterus so that an implanted embryo will not be aborted and helps prepare breast tissue for lactation. Hormones of the TestesIn addition to male sex cells, or sperm, the testes also produce male sex hormones, or androgens, of which testosterone is the most important. 3. Testosterone ➢ Promotes the growth and maturation of the reproductive system organs to prepare the young man for reproduction. ➢ It also causes the male’s secondary sex characteristics to appear and stimulates the male sex drive. ➢ It is necessary for continuous production of sperm. ➢ Testosterone production is specifically stimulated by LH. Other Hormone-Producing Tissues and OrgansPlacenta ➢ During very early pregnancy, a hormone called human chorionic gonadotropin (hCG) is produced by the developing embryo and then by the fetal parts of the placenta. ➢ hCG stimulates the ovaries to continue producing estrogen and progesterone so that the lining of the uterus is not sloughed off in menses. ➢ In the third month, the placenta assumes the job of the ovaries of producing estrogen and progesterone, and the ovaries become inactive for the rest of the pregnancy. ➢ The high estrogen and progesterone blood levels maintain the lining of the uterus and prepare the breasts for producing milk. ➢ Human placental lactogen (hPL) works cooperatively with estrogen and progesterone in preparing the breasts for lactation. ➢ Relaxin, another placental hormone, causes the mother’s pelvic ligaments and the pubic symphysis to relax and become more flexible, which eases birth passage. Developmental Aspects of the Endocrine System ➢ In late middle age, the efficiency of the ovaries begins to decline, causing menopause. o Reproductive organs begin to atrophy o Ability to bear children ends o Problems associated with estrogen deficiency begin to occur (arteriosclerosis, osteoporosis, decreased skin elasticity, “hot flashes”) ➢ No such dramatic changes seem to happen in men. ➢ Elderly persons are less able to resist stress and infection. ➢ Exposure to pesticides, industrial chemicals, dioxin, and pother soil and water pollutants diminishes endocrine function, which may explain the higher cancer rates among older adults in certain areas of the country. ➢ All older people have some decline in insulin production, and type 2 diabetes mellitus is most common in this age group. BLOOD ➢ It is the only fluid tissue in the body. ➢ A homogenous liquid that has both solid and liquid components. ➢ Taste, Odor, 5x thicker than water ➢ Classified as a connective tissue ❖Living cells = formed elements ❖Non-living matrix = plasma (90% water) Components •Formed elements (blood cells)are suspended in plasma •The collagen and elastin fibers typical of other connective tissues are absent from blood; instead, dissolved proteins become visible as fibrin strands during blood clotting •If a sample of blood is separated, the plasma rises to the top, and the formed elements, being heavier, fall to the bottom. •Most of the erythrocytes (RBCs) settle at the bottom of the tube •There is a thin, whitish layer called the buffy coat at the junction between the erythrocytes and the plasma containing leukocytes (WBCs) and platelets   Physical Characteristics and Volume • Color range ➢ Oxygen-rich blood is scarlet red ➢ Oxygen-poor blood is dull red • pH must remain between 7.35–7.45 • Slightly alkaline • Blood temperature is slightly higher than body temperature • 5-6 Liters or about 6 quarts /body   Functions and Composition of Blood 1. Transport of gases, nutrients and waste products 2. Transport of processed molecules 3. Transport of regulatory molecules 4. Regulation of pH and osmosis 5. Maintenance of body temp 6. Protection against foreign substances 7. Clot formation   Plasma • The liquid part of the blood; 90 percent water • Over 100 different substances are dissolved in this straw-colored fluid: ➢ nutrients ➢ electrolytes ➢ respiratory gases ➢ hormones ➢ plasma proteins; and ➢ various wastes and products of cell metabolism   • Plasma proteins are the most abundant solutes in plasma (albumin and clotting proteins) • Plasma helps to distribute body heat, a by-product of cellular metabolism, evenly throughout the body. Formed Elements Erythrocytes (RBCs) • Function primarily to ferry oxygen to all cells of the body. • RBCs differ from other blood cells because they are anucleate (no nucleus) • Contain very few organelles (RBCs circulating in the blood are literally “bags” of hemoglobin molecules ) •Very efficient oxygen transporters (they lack mitochondria and make ATP by anaerobic mechanisms) • Their small size and peculiar shape provide a large surface area relative to their volume, making them suited for gas exchange • RBCs outnumber WBCs by about 1,000 to 1 and are the major factor contributing to blood viscosity. • There are normally about 5 million cells per cubic millimeter of blood. • The more hemoglobin molecules the RBCs contain, the more oxygen they will be able to carry. • A single RBC contains about 250 million hemoglobin molecules, each capable of binding 4 molecules of oxygen. • Normal hemoglobin count is 12-18 grams of hemoglobin per 100 ml of blood • Men: 13-18g/ml Women: 12-16 g/ml   Homeostatic Imbalance Anemia • a decrease in the oxygen-carrying ability of the blood, whatever the reason is. • May be the result of (1) a lower-than-normal number of RBCs or (2) abnormal or deficient hemoglobin content in the RBCs.   Polycythemia Vera • An excessive or abnormal increase in the number of erythrocytes; may result from bone marrow cancer or a normal physiologic response to living at high altitudes, where the air is thinner and less oxygen is available (secondary polycythemia)     Formed Elements Leukocytes (WBCs) • Are far less numerous than RBCs • They are crucial to body defense • On average, there are 4,800 to 10,800 WBCs/mm3 of blood • WBCs contain nuclei and the usual organelles, which makes them the only complete cells in the blood. • WBCs are able to slip into and out of the blood vessels – a process called diapedesis • WBCs can locate areas of tissue damage and infection in the body by responding to certain chemicals that diffuse from the damaged cells (positive chemostaxis) • Whenever WBCs mobilize for action, the body speeds up their production, and as many as twice the normal number of WBCs may appear in the blood within a few hours. • A total WBC count above 11,000 cells/mm3 is referred to as leukocytosis. • The opposite condition, leukopenia, is an abnormally low WBC count (commonly caused by certain drugs, such as corticosteroids and anti-cancer agents) • WBCs are classified into two major groups – granulocytes and agranulocytes – depending on whether or not they contain visible granules in their cytoplasm.   Granulocytes Neutrophils ➢ Are the most numerous WBCs. ➢ Neutrophils are avid phagocytes at sites of acute infection. Eosinophils ➢ Their number increases rapidly during infections by parasitic worms ingected in food such as raw fish or entering through the skin. Basophils ➢ The rarest of the WBCs, have large histamine-containing granules. Histamine ➢ is an inflammatory chemical that makes blood vessels leaky and attracts other WBCs to the inflamed site   Agranulocytes Lymphocytes ➢ Have a large, dark purple nucleus that occupies most of the cell volume. ➢ Lymphocytes tend to take up residence in lymphatic tissues, such as the tonsils, where they play an important role in the immune response. ➢ They are the second most numerous leukocytes in the blood Monocytes ➢ Are the largest of the WBCs. ➢ When they migrate into the tissues, they change into macrophages. ➢ Macrophages are important in fighting chronic infections, such as tuberculosis, and in activating lymphocytes Platelets   ➢ They are fragments of bizarre multinucleate cells called megakaryocytes, which pinch off thousands of anucleate platelet “pieces” that quickly seal themselves off from the surrounding fluids. ➢ Normal adult has 150,000 to 450,000 per cubic millimeter of blood ➢ Platelets are needed for the clotting process that stops blood loss from broken blood vessels. ➢ Average lifespan is 9 to 12 days   Hematopoiesis • Occurs in red bone marrow, or myeloid tissue. • In adults, this tissue is found chiefly in the axial skeleton, pectoral andpelvic girdles, and proximal epiphyses of the humerus and femur. • On average, the red marrow turns out an ounce of new bloodcontaining 100 billion new cells every day. • All the formed elements arise from a common stem cell, thehemocytoblast, which resides in red bone marrow. • Once a cell is committed to a specific blood pathway, it cannotchange. • The hemocytoblast forms two types of descendants – the lymphoidstem cell, which produces lymphocytes, and the myeloid stem cell,which can produce other classes of formed elements.   Formation of RBCs • Because they are anucleate, RBCs are unable to synthesizeproteins, grow, or divide. • As they age, RBCs become rigid and begin to fall apart in 100 to 120 days. • Their remains are eliminated by phagocytes in the spleen, liver, and other body tissues. • RBC components are salvaged. Iron is bound to protein as ferritin, and the balance of the heme group is degraded to bilirubin, which is then secreted into the intestine by liver cells where it becomes a brown pigment called stercobilin that leaves the body in feces. • Globin is broken down to amino acids which are released into the circulation.The rate of erythrocyte production is controlled by a hormone called erythropoietin (from the kidneys) • Erythropoietin targets the bone marrow prodding it into “high gear” to turn out more RBCs. • An overabundance of erythrocytes, or an excessive amount of oxygen in the bloodstream, depresses erythropoietin release and RBC production. • However, RBC production is controlled not by the relative number of RBCs in the blood, but by the ability of the available RBCs to transport enough oxygen to meet the body’s demands   Formation of WBCs and Platelets   • The formation of leukocytes and platelets is stimulated by hormones • These colony stimulating factors (CSFs) and interleukins not only prompt red bone marrow to turn out leukocytes, but also enhance the ability of mature leukocytes to protect the body. • The hormone thrombopoietin accelerates the production of platelets from megakaryocytes, but little is know about how process is regulated. • When bone marrow problems or disease condition is suspected, bone marrow biopsy is done.   Hemostasis If a blood vessel wall breaks, a series of reactions starts the process of hemostasis (stopping the bleeding). Phases of Hemostasis 1. Vascular spasms occur. 2. Platelet plug forms. 3. Coagulation events occur.       Human Blood Groups • An antigen is a substance that the body recognizes as foreign; it stimulates the immune system to mount a defense against it. • The “recognizers” are antibodies present in plasma that attach to RBCs bearing surface antigens different from those on the patient’s RBCs.   ABO and Rh Blood Types The blood group system recognizes four blood types: • Type A, B, AB, and O • They are distinguished from each other in part by their antigens and antibodies. • Specific antibodies are found in the serum based on the type of antigen on the surface of the RBC   ABO and Rh Blood Types BLOOD TYPE Can Accept From Can Donate To A A, O A, AB B B, O B, AB AB A, B, AB, O AB O O O, A, B, AB   The Rh Factor Rh-Positive Rh-Negative Contains the Rh antigen -No Rh antigen   -Will make antibodies if given Rh-positive blood   -Agglutination can occur if given Rh-positive blood     Summary • Blood is responsible for transporting oxygen, fluids, hormones, and antibodies and for eliminating waste materials. • The major components of blood include the formed elements and plasma. • RBCs transport oxygen and carbon dioxide; WBCs destroy foreign invaders. • WBCs include granulocytes and agranulocytes. • Plasma is the liquid portion of unclotted blood. Serum is the liquid portion of clotted blood • Hemostasis includes four stages: blood vessel spasm, platelet plug formation, blood clotting, and fibrinolysis. • ABO and Rh types are determined by the antigen found on the RBCs
Updated 159d ago
flashcards Flashcards (71)
Central - brain and spinal cord Peripheral - everything else soma - body dendrites - the fingers that extend from the soma or cell body afferent - from the body to the central nervous system (sensory information) Sensory info - coming into the CNS (from the body) Afferent neuron Interneuron - in between CNS and PNS Motor info - coming out of the CNS (to the body) Efferent neuron Neurons: nerve cells Receive information in dendrites Information flows through the axon Eventually reaches an effector Synapse: gap between two neurons Synaptic terminals Glial cells Support the neurons Schwann cells & Oligodendrocytes Myelin sheath On the axon Function: prevents cross-talk and accelerates the speed of action potential Schwann cell - produces myelin sheath in PNS Oligodendrocytes - produces myelin sheath in CNS Like an octopus: many arms wrapping around different / same neurons unlike Schwann cell Node of Ranvier - space in between schwann cells Saltatory conduction Presence of node of Ranvier allows jumping of signals → much faster nerve impulse jumps from node to node Grey matter - cell body, dendrites, synapses White matter - myelinated axons (white color comes from lipid) Dorsal root ganglion Large collection of afferent neurons near the spinal cord Cell body Location is different in Sensory vs. peripheral neurons Sensory neurons - cell body in dorsal root ganglion Peripheral neurons - cell body in gray matter (make sure to know how to identify which microscope took what kind of pictures) SEM vs. TEM SEM - outer surface TEM - inner matter, more detail? Interneurons Help with more complicated types of signals such as reflex Non-decremental action potential: does not die out over space Energy at first same as energy at the end Nerve impulse Resting membrane potential: Inside of axon is -70 mV due to negatively charged proteins inside Inside: potassium outside: sodium Ions cannot diffuse in and out of membrane: requires proteins to allow exchange Depolarization (sodium influx) Threshold hit: open voltage gated sodium channel → facilitated diffusion of sodium ions (NA+) into the cells → inner charge becomes more positive Repolarization (potassium efflux) Voltage gated potassium channels open a little later → facilitated diffusion of potassium ions (K+) to out of the cells → inner charge becomes more negative hillock Refractory period Absolute: absolutely will not get an action potential during this period Relative: membrane potential lower than -70mV → can get an action potential depending on the size of the stimulus because it requires a bigger stimulus to reach the threshold Sodium-potassium pump Active transport (against concentration gradient) resets the sodium and potassium to allow the nerve impulse to happen again pumps 3 sodium out, pumps 2 potassium in Intensity is indicated by the frequency of action potentials Ex. very hot - thousands of action potentials Ex. nice and warm - some action potentials
Updated 378d ago
flashcards Flashcards (21)
Axons
Updated 394d ago
flashcards Flashcards (17)
Axons
Updated 395d ago
flashcards Flashcards (17)
0.00
studied byStudied by 0 people