Results for "Reuse"

Filters

Flashcards

Unit 10 – Drugs for Central Nervous System (CNS) Problems (Comprehensive Study Guide – Nursing Pharmacology) ⸻ 🧩 Central Nervous System (CNS) Overview • CNS = Brain + Spinal Cord • Controls body movement, behavior, and cognitive function. • Neurotransmitters are chemicals that transmit signals between neurons. • Excitatory: Acetylcholine (ACh), epinephrine, norepinephrine • Inhibitory: Dopamine, serotonin, gamma-aminobutyric acid (GABA) ⚖️ Balance of dopamine and acetylcholine is critical for smooth movement. An imbalance leads to disorders like Parkinson’s Disease. ⸻ 🧍‍♂️ Parkinson’s Disease (PD) Cause • Progressive CNS disorder due to low dopamine production in the substantia nigra. • Too little dopamine → too much acetylcholine, causing impaired motor control. Key Symptoms Motor: • Tremors (“pill-rolling”) • Bradykinesia (slow movements) • Muscle rigidity, stiffness • Stooped posture, shuffling gait • Difficulty rising, “freezing in place” • Masklike facial expression Nonmotor: • Constipation, urinary frequency • Depression, anxiety, hallucinations • Sleep issues, fatigue • Memory problems ⸻ Drug Classes for PD Goal: Restore balance between dopamine and acetylcholine. 1️⃣ Dopamine Agonists Action: Mimic or increase dopamine. Improve movement, coordination, and muscle control. Examples: • carbidopa/levodopa (Sinemet, Rytary) • pramipexole (Mirapex ER) • ropinirole (Requip) • rotigotine (Neupro patch) Nursing Implications & Teaching: • Give 30–60 min before meals (empty stomach). • Avoid protein-rich foods (reduces absorption). • Monitor for orthostatic hypotension — rise slowly. • Don’t crush extended-release tablets. • Neupro patch: rotate sites, don’t reuse within 14 days. • Avoid vitamin B6 unless taken with carbidopa. • Takes 2–3 weeks for full effect. Side Effects: • Hypotension, headache, nausea, insomnia • Dyskinesia (abnormal movements) • “On/off effect” – medication wears off quickly • Long-term use → hallucinations, impulse control problems Adverse Effects: • Neuroleptic malignant syndrome: fever, rigidity, confusion • Psychosis, severe hypotension ⸻ 2️⃣ COMT Inhibitors Action: Block COMT enzyme → prolong dopamine activity. Examples: • entacapone (Comtan) • tolcapone (Tasmar) Nursing Implications: • Always give with carbidopa/levodopa. • Monitor liver function (q6 months) – risk of liver failure (especially tolcapone). • Harmless side effect: brown-orange urine. • Rise slowly to prevent hypotension. ⸻ 3️⃣ MAO-B Inhibitors Action: Inhibit MAO-B enzyme → prevents dopamine breakdown. Examples: • selegiline (Eldepryl) • rasagiline (Azilect) • safinamide (Xadago) Teaching: • Avoid foods high in tyramine → hypertensive crisis risk. (Aged cheese, wine, beer, cured meats, soy sauce, yogurt, avocados, bananas) • Monitor BP closely. • Avoid OTC decongestants or stimulants. • Can cause insomnia, dizziness, dry mouth, or constipation. ⸻ 🧠 Alzheimer’s Disease (AD) Cause • Progressive neurodegenerative disorder leading to memory loss, confusion, and poor judgment. • Loss of acetylcholine (ACh) and buildup of amyloid plaques and neurofibrillary tangles in the brain. Symptoms • Early: forgetfulness, confusion, mood changes. • Late: loss of reasoning, personality changes, inability to perform ADLs. ⸻ Drug Classes for AD 1️⃣ Cholinesterase Inhibitors Action: Block enzyme acetylcholinesterase (AChE) → increases ACh → improves memory and function. Examples: • donepezil (Aricept) • rivastigmine (Exelon) • galantamine (Razadyne) Side Effects: • Nausea, vomiting, diarrhea • Loss of appetite, GI discomfort • Drowsiness, headache, insomnia • Muscle cramps, bradycardia Adverse Effects: • Dysrhythmias, GI bleeding, hallucinations • Overstimulation of parasympathetic system (too much ACh) Nursing Implications: • Give at bedtime to reduce nausea. • Monitor weight, HR, and mental changes. • Report black/tarry stools or vomiting blood. • Avoid OTC anticholinergics (they reduce effectiveness). ⸻ 2️⃣ NMDA Blockers Action: Block NMDA receptor → decreases glutamate activity → prevents neuron death. Example: • memantine (Namenda) Used in: Moderate to severe AD (often combined with donepezil). ⸻ ⚡ Epilepsy / Seizure Drugs (AEDs) Purpose Reduce excessive electrical activity in the brain and prevent seizures. Common AEDs: • phenytoin (Dilantin) – prevents neuron excitation • topiramate (Topamax) – broad-spectrum seizure control Topiramate Key Points: • Side effects: dizziness, drowsiness, taste changes, paresthesias (“pins and needles”) • Adverse: metabolic acidosis, ↑ ammonia → confusion, lethargy, vomiting • Monitor: serum bicarbonate & ammonia levels • Teaching: stay hydrated, report mental status changes, don’t crush tablets • Contraindicated in pregnancy (teratogenic) ⸻ 💥 Multiple Sclerosis (MS) Pathophysiology • Autoimmune disease where the immune system attacks myelin (fatty sheath around neurons). • Leads to nerve signal disruption → muscle weakness and loss of coordination. • Common type: Relapsing-Remitting MS (RRMS) – periods of flare-ups and remission. Common Symptoms • Fatigue, weakness, difficulty walking • Double vision or blurred vision • Tingling or numbness • Bladder/bowel dysfunction • Depression, poor concentration ⸻ Drug Therapy for MS 1️⃣ Biological Response Modifiers (BRMs) Action: Modify immune system activity and slow disease progression. Examples: • beta-interferons (Avonex, Betaseron, Rebif, Extavia, Plegridy) • glatiramer (Copaxone) • fingolimod (Gilenya) • teriflunomide (Aubagio) Side Effects: • Flu-like symptoms, headache, fatigue • Elevated liver enzymes, slow HR • Thinning scalp hair Nursing Teaching: • Rotate injection sites. • Monitor liver enzymes, CBC, and heart rate. • Avoid live vaccines. ⸻ 2️⃣ Monoclonal Antibodies Action: Destroy lymphocytes that attack myelin. Examples: • alemtuzumab (Lemtrada) • natalizumab (Tysabri) • ocrelizumab (Ocrevus) Side Effects: • Increased risk of infection • Headache, rash, fatigue • GI upset Nursing Teaching: • Given IV every few months to yearly. • Monitor for infusion reactions and infection signs. ⸻ 3️⃣ Neurologic Drugs Examples: • dimethyl fumarate (Tecfidera) – reduces CNS inflammation • dalfampridine (Ampyra) – improves walking by increasing nerve conduction Teaching: • Take daily; don’t crush tablets. • Watch for GI symptoms and dizziness. ⸻ 💪 Amyotrophic Lateral Sclerosis (ALS) Description • Progressive, fatal disorder destroying motor neurons → paralysis. • Death usually occurs within 3–5 years of diagnosis. Drug Therapy Glutamate Antagonists Example: • riluzole (Rilutek, Tiglutik) Action: Inhibits glutamate release → slows neuron damage → prolongs life by months. Side Effects: • Weakness, nausea, dizziness • Liver toxicity (↑ liver enzymes) • Neutropenia, anemia Nursing Implications: • Monitor liver enzymes before and during therapy. • Report jaundice or dark urine. • Take on an empty stomach (1 hr before or 2 hrs after meals). • Avoid alcohol. • Don’t breastfeed while on this med. ⸻ ⚙️ Myasthenia Gravis (MG) Description • Autoimmune disease destroying acetylcholine receptors at neuromuscular junction. • Causes muscle weakness and fatigue, especially in eyes, mouth, throat. Symptoms • Ptosis (drooping eyelids) • Difficulty chewing/swallowing • Weakness in arms, legs, or respiratory muscles • Worsens with activity, improves with rest ⸻ Drug Therapy Acetylcholinesterase Inhibitors Action: Prevent breakdown of acetylcholine → improves nerve–muscle communication. Example: • pyridostigmine (Mestinon) Dosage: Usually every 4–6 hours, depending on patient response. Side Effects: • Nausea, vomiting, abdominal cramps, diarrhea • Increased salivation, sweating • Bradycardia, hypotension Adverse: • Cholinergic crisis (too much medication): → extreme weakness, bradycardia, bronchospasm, respiratory arrest. Nursing Implications: • Use with caution in asthma, COPD, bradycardia. • Give doses at same time each day to maintain muscle strength. • Monitor for myasthenic vs. cholinergic crisis. • Give meds 30–45 min before meals to prevent aspiration. Patient Teaching: • Take missed dose ASAP (but skip if close to next dose). • Don’t double dose. • Avoid alcohol and sedatives. • Report muscle weakness or breathing difficulty. • Keep atropine available (antidote for cholinergic crisis)
Updated 51d ago
flashcards Flashcards (17)
AOP & Reuse
Updated 229d ago
flashcards Flashcards (11)
Reuse and recycle
Updated 342d ago
flashcards Flashcards (15)
Software Reuse
Updated 358d ago
flashcards Flashcards (20)
The Endoplasmic Reticulum (Er) Plays A Key Role In The Modification Osince The Rough Er Helps Modify Proteins That Will Be Secreted From The Cell, Cells Whose Job Is To Secrete Large Amounts Of Enzymes Or Other Proteins, Such As Liver Cells, Have Lots Of Rough Er. Smooth Er The Smooth Endoplasmic Reticulum (Smooth Er) Is Continuous With The Rough Er But Has Few Or No Ribosomes On Its Cytoplasmic Surface. Functions Of The Smooth Er Include: Synthesis Of Carbohydrates, Lipids, And Steroid Hormones Detoxification Of Medications And Poisons Storage Of Calcium Ions In Muscle Cells, A Special Type Of Smooth Er Called The Sarcoplasmic Reticulum Is Responsible For Storage Of Calcium Ions Which Are Needed To Trigger The Coordinated Contractions Of Muscle Fibers. There Are Also Tiny "Smooth" Patches Of Er Found Within The Rough Er. These Patches Serve As Exit Sites For Vesicles Budding Off From The Rough Er And Are Called Transitional Er . The Golgi Apparatus When Vesicles Bud Off From The Er, Where Do They Go? Before Reaching Their Final Destination, The Lipids And Proteins In The Transport Vesicles Need To Be Sorted, Packaged, And Tagged So That They Wind Up In The Right Place. This Sorting, Tagging, Packaging, And Distribution Takes Place In The Golgi Apparatus (Golgi Body), An Organelle Made Up Of Flattened Discs Of Membrane. Micrograph Of The Golgi Apparatus Showing A Series Of Flattened Membrane Discs In Cross-Section _image Credit: "The Endomembrane System And Proteins: Figure 3" By Openstax College, Biology (Cc By 3.0), Modification Of Work By Lousia Howard_ The Receiving Side Of The Golgi Apparatus Is Called The Cis Face And The Opposite Side Is Called The Trans Face. Transport Vesicles From The Er Travel To The Cis Face, Fuse With It, And Empty Their Contents Into The Lumen Of The Golgi Apparatus. As Proteins And Lipids Travel Through The Golgi, They Undergo Further Modifications. Short Chains Of Sugar Molecules Might Be Added Or Removed, Or Phosphate Groups Attached As Tags. Carbohydrate Processing Is Shown In The Diagram As The Gain And Loss Of Branches On The Purple Carbohydrate Group Attached To The Protein. Image Showing Transport Of A Membrane Protein From The Rough Er Through The Golgi To The Plasma Membrane. The Protein Is Initially Modified By The Addition Of Branching Carbohydrate Chains In The Rough Er; These Chains Are Then Trimmed Back And Replaced With Other Branching Chains In The Golgi Apparatus. The Protein, With Its Final Set Of Carbohydrate Chains, Is Then Transported To The Plasma Membrane In A Transport Vesicle. The Vesicle Fuses With The Plasma Membrane, Its Lipids And Protein Cargo Becoming Part Of The Plasma Membrane. _image Modified From "The Endomembrane System And Proteins: Figure 1" By Openstax College, Biology (Cc By 3.0), Modification Of Work By Magnus Manske_ Finally, The Modified Proteins Are Sorted (Based On Markers Such As Amino Acid Sequences And Chemical Tags) And Packaged Into Vesicles That Bud From The Trans Face Of The Golgi. Some Of These Vesicles Deliver Their Contents To Other Parts Of The Cell Where They Will Be Used, Such As The Lysosome Or Vacuole. Others Fuse With The Plasma Membrane, Delivering Membrane-Anchored Proteins That Function There And Releasing Secreted Proteins Outside The Cell. Cells That Secrete Many Proteins—Such As Salivary Gland Cells That Secrete Digestive Enzymes, Or Cells Of The Immune System That Secrete Antibodies—Have Many Golgi Stacks. In Plant Cells, The Golgi Apparatus Also Makes Polysaccharides (Long-Chain Carbohydrates), Some Of Which Are Incorporated Into The Cell Wall. Lysosomes The Lysosome Is An Organelle That Contains Digestive Enzymes And Acts As The Organelle-Recycling Facility Of An Animal Cell. It Breaks Down Old And Unnecessary Structures So Their Molecules Can Be Reused. Lysosomes Are Part Of The Endomembrane System, And Some Vesicles That Leave The Golgi Are Bound For The Lysosome. Lysosomes Can Also Digest Foreign Particles That Are Brought Into The Cell From Outside. As An Example, Let'S Consider A Class Of White Blood Cells Called Macrophages, Which Are Part Of The Human Immune System. In A Process Known As Phagocytosis, A Section Of The Macrophage’S Plasma Membrane Invaginates—Folds Inward—To Engulf A Pathogen, As Shown Below. Diagram Of Phagocytosis, In Which The Phagosome Generated By Engulfment Of A Particle Fuses With A Lysosome, Allowing Digestion Of The Particle. _image Credit: Modified From "The Endomembrane System And Proteins: Figure 4" By Openstax College, Biology (Cc By 3.0)_ The Invaginated Section, With The Pathogen Inside, Pinches Off From The Plasma Membrane To Form A Structure Called A Phagosome. The Phagosome Then Fuses With A Lysosome, Forming A Combined Compartment Where Digestive Enzymes Destroy The Pathogen. Vacuoles Plants Cells Are Unique Because They Have A Lysosome-Like Organelle Called The Vacuole. The Large Central Vacuole Stores Water And Wastes, Isolates Hazardous Materials, And Has Enzymes That Can Break Down Macromolecules And Cellular Components, Like Those Of A Lysosome. Plant Vacuoles Also Function In Water Balance And May Be Used To Store Compounds Such As Toxins And Pigments (Colored Particles). Lysosomes Vs. Peroxisomes One Point That Can Be Confusing Is The Difference Between Lysosomes And Peroxisomes. Both Types Of Organelles Are Involved In Breaking Down Molecules And Neutralizing Hazards To The Cell. Also, Both Usually Show Up As Small, Round Blobs In Diagrams. However, The Peroxisome Is A Different Organelle With Its Own Unique Properties And Role In The Cell. It Houses Enzymes Involved In Oxidation Reactions, Which Produce Hydrogen Peroxide ( ) As A By-Product. The Enzymes Break Down Fatty Acids And Amino Acids, And They Also Detoxify Some Substances That Enter The Body. For Example, Alcohol Is Detoxified By Peroxisomes Found In Liver Cells. Importantly, Peroxisomes—Unlike Lysosomes—Are Not Part Of The Endomembrane System. That Means They Don'T Receive Vesicles From The Golgi Apparatus. You Can Learn More About How Proteins Are Shipped To The Peroxisome In The Article On Protein Targeting.F Proteins And The Synthesis Of Lipids. It Consists Of A Network Of Membranous Tubules And Flattened Sacs. The Discs And Tubules Of The Er Are Hollow, And The Space Inside Is Called The Lumen. Rough Er The Rough Endoplasmic Reticulum (Rough Er) Gets Its Name From The Bumpy Ribosomes Attached To Its Cytoplasmic Surface. As These Ribosomes Make Proteins, They Feed The Newly Forming Protein Chains Into The Lumen. Some Are Transferred Fully Into The Er And Float Inside, While Others Are Anchored In The Membrane. Inside The Er, The Proteins Fold And Undergo Modifications, Such As The Addition Of Carbohydrate Side Chains. These Modified Proteins Will Be Incorporated Into Cellular Membranes—The Membrane Of The Er Or Those Of Other Organelles—Or Secreted From The Cell. If The Modified Proteins Are Not Destined To Stay In The Er, They Will Be Packaged Into Vesicles, Or Small Spheres Of Membrane That Are Used For Transport, And Shipped To The Golgi Apparatus. The Rough Er Also Makes Phospholipids For Other Cellular Membranes, Which Are Transported When The Vesicle Forms.
Updated 507d ago
flashcards Flashcards (5)
0.00
studied byStudied by 0 people