Results for "Blood Plasma"

Filters

Flashcards

📘 Chapter 19: Blood – Full Simplified Study Notes (27 Slides) ⸻ Slide 1: Cardiovascular System • Cardiovascular system = heart, blood, blood vessels. • Blood’s job: • Delivers nutrients, hormones, oxygen, and chemical messages. • Carries immune cells to fight infections. • Why it matters: Without this transport system, cells would starve and toxins would build up. • Analogy: Like UPS + garbage service → delivers packages (nutrients, O₂) and removes trash (waste, CO₂). ⸻ Slide 2: Whole Blood • Whole blood = plasma + formed elements. • Hematocrit: percentage of blood volume made of cells. • Plasma: watery fluid. • Key properties of blood: • Temp: 38°C (100.4°F) → warmer than body surface. • Thickness: 5x thicker than water. • pH: ~7.4 (slightly alkaline). • Volume: Men = 5–6 L, Women = 4–5 L. • About 7% of body weight. • Example: If someone weighs 150 lbs, about 10 lbs of that is blood. ⸻ Slide 3: Blood Plasma • Plasma = liquid with proteins + solutes. • Proteins: • Albumins: keep water inside blood vessels (prevent swelling). • Globulins: antibodies → defense. • Fibrinogen: forms clots. • Other solutes: • Electrolytes: Na⁺, K⁺, Cl⁻, HCO₃⁻ (important for nerves/muscles). • Nutrients: glucose, fructose, amino acids. • Wastes: urea, uric acid. • Analogy: Plasma = soup broth carrying salt, sugar, proteins, and waste. ⸻ Slide 4: Formed Elements • Red Blood Cells (RBCs / erythrocytes): 99.9% of all blood cells. • RBC count: Men = 4.5–6.3 million/μL, Women = 4.2–5.5 million/μL. • Platelets: fragments needed for clotting. • White Blood Cells (WBCs / leukocytes): fight disease. • Think: Plasma is the liquid, formed elements are the “stuff floating inside.” ⸻ Slide 5: RBC Structure • RBCs lose their nucleus & organelles. • Consequences: • Can’t divide. • Can’t make proteins or repair. • Only use glycolysis (anaerobic metabolism) → no oxygen needed for energy. • Analogy: Like delivery trucks with no engine shop → they drive until they break down. ⸻ Slide 6: RBC Lifespan • RBCs have no nucleus, mitochondria, ribosomes → no repair. • Rely on glycolysis for energy. • Live about 120 days. • Must be recycled by spleen/liver. • Example: Like a disposable battery that runs until it dies. ⸻ Slide 7: RBC Shape & Function • Shape = biconcave disc (doughnut-like, thin middle). • Benefits: • High surface area → better oxygen exchange. • Can stack like coins → smooth flow. • Flexible → squeeze through tiny capillaries. • Analogy: Like a flexible frisbee that can bend and stack. ⸻ Slide 8: Hemoglobin • Main protein inside RBC. • Structure: • 2 alpha chains + 2 beta chains. • Each has heme group with iron atom (Fe). • Function: Iron binds oxygen → carries it around body. • Why recycle? Iron is valuable, so old RBCs get broken down to save it. • Analogy: Hemoglobin = oxygen backpack. ⸻ Slide 9: RBC Lifecycle • Starts from hemocytoblast (stem cell). • Branches into: • Myeloid stem cells: make RBCs + some WBCs. • Lymphoid stem cells: make lymphocytes. • Think: Hemocytoblast = tree trunk, RBCs and WBCs = branches. ⸻ Slide 10: RBC Production (Erythropoiesis) • Erythropoiesis = making RBCs. • Embryo: 1st 8 weeks = yolk sac → later liver, spleen, thymus, bone marrow. • Adult: red bone marrow only (vertebrae, sternum, ribs, skull, pelvis, ends of long bones). • Nutrients needed: amino acids, iron, vitamins B12, B6, folic acid. • Analogy: RBCs = cookies, bone marrow = kitchen, iron + vitamins = ingredients. ⸻ Slide 11: RBC Production Control • Controlled by erythropoietin (EPO). • Made by kidneys/liver when low oxygen (hypoxia). • Effects: • Increases stem cell division. • Speeds up hemoglobin production. • Blood doping: Athletes take EPO or reinfuse RBCs → more oxygen for muscles. • Risk: thicker blood → clots, strokes. • Analogy: EPO = coach yelling “make more RBCs!” ⸻ Slide 12: Blood Types • RBCs have antigens on membranes (A, B, AB, O). • Rh factor = + or –. • Plasma has antibodies (agglutinins): attack foreign antigens → cause clumping (agglutination). • Universal donor = O–. • Analogy: Blood type = ID card. If ID doesn’t match, antibodies attack. ⸻ Slide 13: RBC Summary • Know: • How typing works. • How RBCs are made. • What controls them. • Why they live 120 days. • How they’re broken down. • Analogy: RBCs = delivery trucks with expiration dates. ⸻ Slide 14: WBC Basics • WBCs = leukocytes. • Have nuclei, organelles, no Hb. • Functions: fight pathogens, remove wastes, destroy abnormal cells. • Only in blood briefly → then move into tissues. • Analogy: WBCs = body’s police force. ⸻ Slide 15: Neutrophils • 50–70% of WBCs. • Nucleus 2–5 lobes. • First responders → attack bacteria. • Use phagocytosis + enzymes. • Die quickly → pus = dead neutrophils + bacteria. • Analogy: Neutrophils = foot soldiers. ⸻ Slide 16: Basophils • <1% WBCs. • Release histamine (dilates vessels, causes swelling/redness). • Release heparin (prevents clots). • Trigger inflammation → work with mast cells. • Analogy: Basophils = fire alarms. ⸻ Slide 17: Eosinophils • 2–4% WBCs. • Stain red-orange. • Bi-lobed nucleus. • Kill parasites, respond to allergies. • Release toxic chemicals (nitric oxide, enzymes). • Help control inflammation. • Analogy: Eosinophils = exterminators. ⸻ Slide 18: Monocytes • 2–8% WBCs. • Largest WBC, kidney-shaped nucleus. • Become macrophages in tissue. • Eat large pathogens, dead cells. • Call fibrocytes → scar tissue. • Analogy: Monocytes = garbage trucks. ⸻ Slide 19: Lymphocytes • 20–30% WBCs. • Big nucleus, little cytoplasm. • Most live in lymph tissue. • Types: • T cells: attack infected cells. • B cells: make antibodies. • NK cells: kill cancer/virus cells. • Analogy: Lymphocytes = special forces. ⸻ Slide 20: WBC Production • From hemocytoblasts. • Myeloid stem cells: all except lymphocytes. • Lymphoid stem cells: lymphocytes. • Colony-Stimulating Factors (CSFs): • M-CSF = monocytes. • G-CSF = granulocytes. • GM-CSF = granulocytes + monocytes. • Multi-CSF = RBCs + WBCs + platelets. • Analogy: CSFs = managers assigning jobs. ⸻ Slide 21: Platelets • Fragments of cells, no nucleus. • Lifespan = 9–12 days. • Removed by spleen. • 2/3 stored for emergencies. • Analogy: Platelets = emergency patch kits. ⸻ Slide 22: Platelet Functions 1. Release clotting chemicals. 2. Form platelet plug at damage site. 3. Contract (actin + myosin) → shrink clot, close wound. • Analogy: Platelets = patch team pulling duct tape tight. ⸻ Slide 23: Hemostasis • Definition: stopping bleeding. • 3 phases: vascular, platelet, coagulation. • Analogy: Like fixing a leaking pipe step by step. ⸻ Slide 24: Vascular Phase • Vessel wall contracts (vascular spasm). • Endothelial cells: • Expose basement membrane. • Release endothelins → stimulate contraction/healing. • Become sticky → platelets attach. • Analogy: Pinch a hose to slow the leak. ⸻ Slide 25: Platelet Phase • Platelets stick to exposed collagen. • Form platelet plug (15 sec after injury). • Release chemicals: ADP, thromboxane A₂, serotonin, Ca²⁺, PDGF. • Feedback prevents over-clotting. • Analogy: Like putting your hand over a hole until repair arrives. ⸻ Slide 26: Coagulation Phase • Chain reaction of clotting factors. • Fibrinogen → fibrin (forms net). • Common pathway: 1. Factor X → prothrombinase. 2. Prothrombin → thrombin. 3. Fibrinogen → fibrin. • Clot retraction pulls vessel edges together. • Analogy: Casting a fishing net over the leak. ⸻ Slide 27: Fibrinolysis & Clotting Needs • Fibrinolysis: clot dissolves after healing. • t-PA → activates plasminogen → plasmin → digests fibrin. • Requirements for clotting: • Calcium (Ca²⁺): needed in all clotting steps. • Vitamin K: liver makes clotting factors; comes from food + gut bacteria. • Deficiency = bleeding problems. • Analogy: Once pipe is repaired, cut away the net (clot)
Updated 15d ago
flashcards Flashcards (19)
Blood Plasma
Updated 100d ago
flashcards Flashcards (16)
Blood Plasma
Updated 159d ago
flashcards Flashcards (7)
Please wait outside until I let you in, and put all your stuff at the back just like we've done about 20 times already this semester. Okay? Or this semester and last, and you will be just fine. Now your lecture exam too is 90 marks big. It is 90 multiple choice questions. Okay. It is going to be on cardiovascular disorders, urinary system, fluid balance, Okay. So let's start talking about them. First of all, okay, you need to know the difference between a myocardial infarct, ischemic attack, a congestive heart failure, and angina pectorals. You need to know what a low level inflammatory response that develops over time where the endothelium is damaged due to the aging or prolonged hypertension, where LDLs accumulate, and the endothelium is repaired with collagen is called. That might take you a long time to read. Okay? But it is a good question. Okay? You need to know now be really, really clear on these. Okay? You absolutely need to know the difference between right ventricular hypertrophy and left ventricular hypertrophy and what they cause. Because there's two questions on here, and so far, this one hasn't been done very well. Okay? Make sure you understand what right ventricular hypertrophy leads to and you understand what left ventricular hypertrophy leads to. Now the original term, congestive heart failure, that refers to left ventricular hypertrophy leading to backup in the lungs. K? You need to know what arteries or vessels are used in bypass surgery. You need to know what a mini stroke is. Okay? You need to know the difference between thrombus and ballast occlusion and arthroma. You need to know what is a restriction in blood supply generally due to factors in the blood vessels with resultant damage or dysfunction of tissue. You need to know, what are the consequences of an aging cardiovascular system. And then I I've got a matching question for you. You need to match the basic function of the proximal convoluted tubule, the glomerulus, and the peri colic duct. And then two of my favorite questions. Are you ready? Okay. You have to find out which of the following is the best explanation for why the cells of the proximal convoluted tubule contain so many microclonary. Oh, isn't that lovely? Okay. And then the other one you need to know is you need to find the best explanation for the microvilli on the apical surface of the proximal convoluted tubules. So don't get that one wrong because we've talked about microvilli about a bazillion times. Okay? This picture is gonna be on there, folks. Okay? This is the picture of the of the nephron from your textbook. Okay. You need to label things like glomerulus glomerulus afferent arteriole collecting duct nephron move. Okay. Where do you find the granular cells? Okay. The difference between the medulla and the cortex. Make sure you know all of those things. I'll read you this one. This is a good question too. Hydrostatic pressure is the primary driving force of plasma through the filtration membrane into the capsular space. All the publicly following statements reflects why hydrostatic pressure is so high in the glomerular capillaries. Select the one statement that does not explain the high pressure within the glomerular capillaries. So you need to know why glomerular capillary pressure is higher than the rest of the capillaries in the body. You need to know how or why cells or transport proteins are prevented from moving through how yeah. What drives reabsorption of organic nutrients in the proximal condylated tubule? Who drives thus? You need to know the mechanism that establishes the medullary osmotic gradient the The functional and structural unit of the kidneys is what? The g force pushing the blood and solids out of the blood across the filtration membrane is what? Okay. The macular densities cells do what? Function in angiotensin two is to do what? What is, specific gravity or density? Okay. If you talk about the specific gravity or density of urine, how is it different from water? You need to actually, this is just one question, but it should be a pretty simple one. Okay? You need to place the following and correct sequence from the formation of a drop of urine to its elimination of the body. And so you have to go through from well, I'll just read it to you. Major calyx, minor calyx, nephron, urethra, ureter, and collecting that. So you need to put those in order from start to finish. Okay? What would happen if the capsular hydrostatic pressure were increased above normal? You need to know what would happen. Reabsorption of bilevels of glucose and amino acids in the filtrate is accomplished. The 44 more. Okay. So you need to match to their definition. All of your hypo and hypers. Make sure you have some under control. Okay? And then you need to match possible causes. So there's possible causes of respiratory alkalosis, metabolic alkalosis, metabolic acidosis, and respiratory acidosis. Respiratory alkalosis, metabolic alkalosis, metabolic acidosis, and respiratory acidosis. There are possible causes for those four things. You need to match the disorder to the cause. Okay? And then you need to know, the body's motor volume is mostly tied to the level of then I have a couple of clinical correlation questions for you, but they are multiple choice this time. So something happened to Jane. You have to tell me what's happening to Jane. Okay? Now whereas sodium is mainly found in the extracellular fluid, most is found in intracellular systems are. Okay. Which of the following is not a likely source of hydrogen ions in blood plasma, so there's a few types in the tablets, so make sure you know which ones are going to produce acids and which ones aren't. And then Annie had something happen to her as well. Across capillary walls is what? Regulation of potassium balance is what? Now Dave Dave did something silly. Okay? Dave ran a marathon. Okay? And then Dave did something even more silly afterwards. I want you to tell me what happened to Dave. And in addition to that, Nancy is having a panic attack. So I want you to tell me what's happening to Nancy in terms of respiratory aesophosis and respiratory aldosterone. Okay. If thyroid and parathyroid glands were surgically removed, which of the following would go out of balance without replacement therapy? Falling arterial blood pressure holds which? An illness, Doug. Doug has severe diarrhea. Okay. And, is accompanying the loss of bicarbonate or secretions. So how is Doug gonna compensate for that for Doug? Okay. You need to know what the medical term for kidney stones is. You need to know what happens, or what could cause the passage of proteins, red blood cells, and white blood cells into the urine. You need to know how to solve prostatic enlargement, and, you need to know what the presence of white blood cells in urine is called and what is causing it. Okay? And then there's a picture of the lymphatic of the lymph node. Okay. You need to label the lymph node picture. And then you there is going to be a matching question on lymphatic structures, so you need to know what happens in the spleen, the lymph nodes, the thoracic duct, the lymph, and the pyre patches. There's a list, a small short list. Okay? So in other words, you're going to need to know what is classified as a lymphoid organ and what does not. Okay? So make sure you know what your lymphoid organs are. You need to know the pathway of lymph. So it starts in lymph capillaries. Where does it end? Make sure you know all the steps along the way. And then you need to know the functions of the spleen. What did what does the spleen do? And that is it for an example
Updated 183d ago
flashcards Flashcards (5)
0.00
studied byStudied by 0 people