G10 Q3 Math Geo sequence + Log + Trig Test Bank

0.0(0)
studied byStudied by 0 people
call kaiCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/47

encourage image

There's no tags or description

Looks like no tags are added yet.

Last updated 3:25 AM on 3/23/25
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No analytics yet

Send a link to your students to track their progress

48 Terms

1
New cards
term image

1.) 3
2.) 1
3.) 2log 2( 3) +3
4.) 2
5.) 3

2
New cards
term image

1.) x=1/4
2.) x=8
3.) x=2

4.) no valid solutions

3
New cards
term image

1.) 2a+1/b
2.) 2ln3/ln5

4a ln(15) = (a+2) ln 81

solve for a

4
New cards
term image

4.1.)

X-Intercept: (1,0)

Pass Point: (e,1)

Vertical Asymptote: x=0

Range: (-inf, +inf)
Domain: (0, +inf)


2.) 2(ln -2(x+(1/2)-2)-1)

3.) Vertical stretch by 2
Reflect over x axis
Translate (-3, -1)

5
New cards
term image

f(x)
Domain: (-inf, +inf)
Range: (-2, +inf)
Horizontal Asymptote: y = -2
f-1(x)
Domain:(-2, +inf)
Range: (-inf, +inf)
Vertical Asymptote: x = -2
X intercept: (8,0)
Y intercept: (0, -0.6989)

<p>f(x)<br>Domain: (-inf, +inf)<br>Range: (-2, +inf)<br>Horizontal Asymptote: y = -2<br>f-1(x)<br>Domain:(-2, +inf)<br>Range: (-inf, +inf)<br>Vertical Asymptote: x = -2 <br>X intercept: (8,0)<br>Y intercept: (0, -0.6989)<br></p><p></p>
6
New cards
term image

f(x)=log sqrt2 (-x+2)

7
New cards
term image

1.)k = 500
2.) 10^6

8
New cards
term image

I = 10.2

<p>I = 10.2 </p>
9
New cards
term image

1.) R(200A0) = log(200A0/A0) = log(200) = 2.301
2.) Find (A1/A2)
6.8-5.8
10^0.9

3.)

10
New cards
11
New cards
term image

k = 2

12
New cards
term image
knowt flashcard image
13
New cards
term image

i) a1: -1 CD: 2
ii) a1: 3/2 CD:-3/2

<p>i) a1: -1 CD: 2<br>ii) a1: 3/2 CD:-3/2</p>
14
New cards
term image

an = 11-3(n-1)
an = log p (b) + (log p (a))²

15
New cards
term image

i) First term: -2 CD:(1/2)
ii) First term: =-2/3 CD:(-1/2)

16
New cards
term image

an = a1 * r^(n-1)
i) an = 2 × 2^(n-1)
ii) an = -2 × (1/2)^(n-1)

17
New cards
term image

1.) 4+8+16+32+64+128
2.)

3.) -13116

18
New cards
term image

1.) 5 sigma n=1 1/5 × (1/2)^(n-1)
2.) 6 sigma n=1 4 * (-3)^(n-1)

19
New cards
term image

7 Terms

20
New cards
term image

11th term 2187

21
New cards
term image

First Convert the Annual interest and Annual pay time to months
Time - r: 7 × 12 = 84
Interest per month - n: 0.00225

Use the Loan Amortization Formula
Then solve for the monthly payment amount M

<p>First Convert the Annual interest and Annual pay time to months<br>Time - r: 7 × 12 = 84 <br>Interest per month - n: 0.00225</p><p>Use the <strong>Loan Amortization Formula</strong><br>Then solve for the monthly payment amount M</p>
22
New cards
term image

First Year: $476.72
Total Pay: $3167.86

23
New cards
term image

1.) First one CD: 5
2.) Last one CD: ½

3.) 1/64

24
New cards
term image
knowt flashcard image
25
New cards
term image

Use Infinite series function
Solve for R algebra substitution

<p>Use Infinite series function<br>Solve for R algebra substitution </p>
26
New cards
term image

1) Explain it in plain words
2) Use the finite sequence formula
-First term a = 4*(0.8)
-Common ratio = (0.8)
-Don’t forget to add 2 meters
To find the total distance travelled in terms of n
3) Use infinite series

<p>1) Explain it in plain words <br>2) Use the finite sequence formula<br>    -First term a = 4*(0.8)<br>    -Common ratio = (0.8)<br>    -Don’t forget to add 2 meters<br>    To find the total distance travelled in terms of n<br>3) Use infinite series</p>
27
New cards
term image

1i) r = (an)/(an-1)
Thus r = 4/(k-4) and r = (k+2)/4
(k+2)/4 = 4/(k-4)
ii) Cross multiply and solve for k
4 × 4 =(k-4)(k+2)
Simplify and rearrange to get
k^2−2k−24=0


2i)Use quadratic formula to solve for k
k = 6 k = -4
ii) Find all possible values of r

Substitute k into the r = equations from before

r = -0.5 and r = 2


<p>1i) r = (an)/(an-1)<br>     Thus r = 4/(k-4) and r = (k+2)/4<br>      (k+2)/4 = 4/(k-4)<br>ii) Cross multiply and solve for k<br>      4 × 4 =(k-4)(k+2)<br>    Simplify and rearrange to get<br>      <span><em>k^</em>2−2<em>k</em>−24=0</span></p><p><br><span>2i)Use quadratic formula to solve for k</span><br><span>      k = 6    k = -4</span><br>ii) Find all possible values of r</p><p>   Substitute k into the r = equations from before</p><p>   r = -0.5 and r = 2 </p><p><br></p>
28
New cards
term image

Finite Series Formula Sn = (a1(1-r^n))/(1-r)
Infinite Series Formula Sn = a1/(1-r)
-1 < r < 1

29
New cards
term image

<p></p>
30
New cards
term image

Domain: IR # Range: [-1, 1] # Max: (π/2, 1) # Min: (3π/2, -1)

Domain: IR # Range: [-1, 1] # Max: (0, 1) # Min: (π, -1)

Domain: IR # Range: IR # Asymp x = πk # (0, πk)

Domain: IR # Range: [0, 2] # Max: (π/4, 2) # Min: (5π/4, 0)

Domain: IR # Range: [-1, 3] # Max: (π/4, 3) # Min: (5π/4, -1)

31
New cards
term image
knowt flashcard image
32
New cards
<p>Find function rule</p>

Find function rule

1.) Sin(x-π) or -Sin(x)

33
New cards
term image
knowt flashcard image
34
New cards
term image

2.) x = π/24 + πk

x=5π/24 + πk

<p>2.) x = <em>π/24 + πk </em></p><p>     <em>x=5π/24 + πk</em></p><p></p>
35
New cards
term image
  1. (1): The function f(x)=2sin⁡x * cos⁡x is odd.

  2. (2): The function f(x)=3sin⁡^2x * cos⁡x + sec⁡x is even.

<ol><li><p><strong>(1):</strong> The function <span>f(x)=2sin⁡x * cos⁡x<em> </em></span>is <strong>odd</strong>.</p></li><li><p><strong>(2):</strong> The function <span>f(x)=3sin⁡^2x * cos⁡x + sec⁡x</span> is <strong>even</strong>.</p></li></ol><p></p>
36
New cards
term image

y=7cos(3/πx)

37
New cards
term image

1.) h(θ)=8tanθ
2.) Look pic

<p><span>1.) h(θ)=8tanθ</span><br>2.) Look pic</p>
38
New cards
term image
  1. (3). 3cos(24π​/149 t) +5

<ol start="3"><li><p>(3). 3cos(24<em>π</em>​/149 t) +5</p></li></ol><p></p>
39
New cards
term image
40
New cards
term image
knowt flashcard image
41
New cards
term image
  • The vertical shift D is the average of the maximum and minimum temperatures.

    D=(87+40)/2=63.5

  • The maximum temperature occurs in July, which is the 7th month.

    For a cosine function, the maximum typically occurs at t=0t=0. Since the maximum is at t=7t=7, the phase shift CC is 7.

<ul><li><p>The vertical shift <span>D</span> is the average of the maximum and minimum temperatures.</p><p><span>D=(87+40)/2=63.5</span></p></li></ul><ul><li><p>The maximum temperature occurs in July, which is the 7th month.</p><p>For a cosine function, the maximum typically occurs at <span>t=0<em>t</em>=0</span>. Since the maximum is at <span>t=7<em>t</em>=7</span>, the phase shift <span>C<em>C</em></span> is 7.</p></li></ul><p></p>
42
New cards
term image

1.) 1.5M

<p>1.) 1.5M</p><p></p>
43
New cards
term image
  1. (a): The period pp is 1/262​ seconds.

  2. (b): The frequency ff is 262 Hz.

<ol><li><p><strong>(a):</strong> The period <span>p<em>p</em></span> is 1/<span>262​</span> seconds.</p></li><li><p><strong>(b):</strong> The frequency <span>f<em>f</em></span> is <strong>262 Hz</strong>.</p></li><li><p></p></li></ol><p></p>
44
New cards
term image
knowt flashcard image
45
New cards
term image
knowt flashcard image
46
New cards
term image
  1. 1/12

  2. 1/12 # ¼

<ol><li><p>1/12</p></li><li><p>1/12  # ¼</p></li><li><p></p></li></ol><p></p>
47
New cards
term image
48
New cards

Explore top flashcards

AP Psych: Unit 0
Updated 529d ago
flashcards Flashcards (78)
BIOL 460 Exam 1
Updated 1111d ago
flashcards Flashcards (69)
Science exam
Updated 966d ago
flashcards Flashcards (167)
Vocab. 251-300
Updated 1013d ago
flashcards Flashcards (50)
ICT
Updated 1107d ago
flashcards Flashcards (55)
AP Psych: Unit 0
Updated 529d ago
flashcards Flashcards (78)
BIOL 460 Exam 1
Updated 1111d ago
flashcards Flashcards (69)
Science exam
Updated 966d ago
flashcards Flashcards (167)
Vocab. 251-300
Updated 1013d ago
flashcards Flashcards (50)
ICT
Updated 1107d ago
flashcards Flashcards (55)