Chapter 2 Vocab Angles Vers

0.0(0)
studied byStudied by 0 people
full-widthCall with Kai
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/13

flashcard set

Earn XP

Description and Tags

Honors Geo

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

14 Terms

1
New cards

Angle Addition Postulate

D is the interior of ∠ABC if and only if m∠ABD+ m∠DBC = m∠ABC

<p>D is the interior of <span>∠ABC if and only if m∠ABD+ m∠DBC = m∠ABC</span></p>
2
New cards

Supplement Theorem

If two angles form a linear pair, then they are supplementary angles. Ex. m∠1 + m∠2 = 180

<p>If two angles form a linear pair, then they are supplementary angles. Ex. m∠1 + m∠2 = 180</p>
3
New cards

Complement Theorem

If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary angles. Ex. m∠1 + m∠2 = 90

<p>If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary angles. Ex. m∠1 + m∠2 = 90 </p>
4
New cards

Congruent Supplements Theorem

Angles supplementary to the same angle or to congruent angles are congruent. EX. If m∠1 + m∠2 = 180 and m∠2 + m∠3 = 180 then ∠1 ∠3

<p>Angles supplementary to the same angle or to congruent angles are congruent.  EX. If m∠1 +  m∠2 = 180 and  m∠2 +  m∠3 = 180 then  ∠1 <span>≅ </span>∠3</p>
5
New cards

Congruent Complement Theorem

Angles complementary to the same angle or to congruent angles are congruent. Ex. If m∠4 +m∠5 = 90 and m∠5 + m∠6 = 90 then ∠4 ≅∠6

<p>Angles complementary to the same angle or to congruent angles are congruent.  Ex. If m∠4 +m∠5 = 90 and m∠5 + m∠6 = 90 then ∠4 ≅∠6  </p>
6
New cards

Vertical Angles Theorem 

If two angles are vertical angles, then they are congruent. Ex ∠1≅∠3 and ∠2 ≅∠4

<p>If two angles are vertical angles, then they are congruent. Ex&nbsp;∠1≅∠3 and&nbsp;∠2 ≅∠4</p>
7
New cards

Right Angle Theorems (Perpendicular) 

Perpendicular Lines intersect to form four right angles. Ex. If AC ⟂ DB, then ∠1, ∠2, ∠3, and ∠4 are right angles.

<p>Perpendicular Lines intersect to form four right angles. Ex. <span>If&nbsp;</span><strong>AC ⟂ DB</strong><span>, then&nbsp;</span><strong>∠1, ∠2, ∠3, and ∠4</strong><span>&nbsp;are right angles.</span></p>
8
New cards

Right Angle Theorem ( Congruence)

All right angles are congruent. Ex. If ∠1, ∠2, ∠3, and ∠4 are right angles, then
∠1 ≅ ∠2 ≅ ∠3 ≅ ∠4.

<p>All right angles are congruent. Ex. <span>If&nbsp;</span><strong>∠1, ∠2, ∠3, and ∠4</strong><span>&nbsp;are right angles, then</span><br><strong>∠1 ≅ ∠2 ≅ ∠3 ≅ ∠4.</strong></p>
9
New cards

Right Angle Theorems (Perpendicular) 

Perpendicular lines form congruent adjacent angles. Ex. If AC ⟂ DB, then
∠1 ≅ ∠2, ∠2 ≅ ∠4, ∠3 ≅ ∠4, and ∠1 ≅ ∠3.

<p><span>Perpendicular lines form congruent adjacent angles. Ex.&nbsp;If&nbsp;</span><strong>AC ⟂ DB</strong><span>, then</span><br><strong>∠1 ≅ ∠2, ∠2 ≅ ∠4, ∠3 ≅ ∠4, and ∠1 ≅ ∠3.</strong></p>
10
New cards

Right Angle Theorems ( congruent and supplementary)

If two angles are congruent and supplementary, then each angle is a right angle. Ex. ∠5 ≅ ∠6 and ∠5 is supplementary to ∠6,
then ∠5 and ∠6 are right angles.

<p>If two angles are congruent and supplementary, then each angle is a right angle. Ex.&nbsp;<span>f&nbsp;</span><strong>∠5 ≅ ∠6</strong><span>&nbsp;and&nbsp;</span><strong>∠5</strong><span>&nbsp;is supplementary to&nbsp;</span><strong>∠6</strong><span>,</span><br><span>then&nbsp;</span><strong>∠5</strong><span>&nbsp;and&nbsp;</span><strong>∠6</strong><span>&nbsp;are right angles.</span></p>
11
New cards

Right Angle Theorems ( Linear Pair)

If two congruent angles form a linear pair, then they are right angles. Ex. If ∠7 and ∠8 form a linear pair,
then ∠7 and ∠8 are right angles.

<p><span>If two congruent angles form a linear pair, then they are right angles. Ex. </span>If&nbsp;<strong>∠7</strong>&nbsp;and&nbsp;<strong>∠8</strong>&nbsp;form a linear pair,<br>then&nbsp;<strong>∠7</strong>&nbsp;and&nbsp;<strong>∠8</strong>&nbsp;are right angles.</p>
12
New cards

Reflexive Property of Congruence 

∠1∠1

13
New cards

Symmetric Property of Congruence

If ∠1 ∠2 then ∠2∠1

14
New cards

Transitive Property of Congruence

If ∠1 ∠2 and ∠2∠3 then ∠1 ∠3

Explore top flashcards