1/16
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No analytics yet
Send a link to your students to track their progress
d/dx tan(x)
sec²(x)
d/dx cot(x)
-csc²(x)
sin2x + cos2x
1
tan2x + 1
sec2x
sin(2x)
2(sinx * cos x)
cos(2x)
2cos²x - 1
d/dx (sec x)
sec (x) * tan(x)
divergent test
limn → ∞ bn = DNE, or ≠ 0 - series diverges
limn → ∞ bn = 0 - inconclusive
alternating series test
if ∑(-1)n * bn
bn is decreasing
limn → ∞ bn = 0
then series converges
absolute ratio test
L = limn → ∞ (bn + 1 * (1/bn)).
If L < 1 convergent, L > 1 divergent, L = 1 inconclusive
integration by parts
∫u dv = uv - ∫v du
Integral Test
criteria: continuous, positive, and decreasing over interval
L = limn → ∞ (bn). if finite, converges. If not finite, diverges
d/dx (csc x)
-cscx * cot x
arc length formula
ba∫√(1 + f’(x)2)
average value formula
1(b-a) * ba∫f(x)dx
demoivres theorem
if z = r(cos θ + i sin θ), then zn = rn(cos (nθ) + i sin (nθ))
euler’s formula
r * eiθ = r(cos(θ) + i sin(θ)) = r cis θ
θ - argument, r - modulus