Derivative Rules

0.0(0)
studied byStudied by 4 people
0.0(0)
full-widthCall with Kai
GameKnowt Play
New
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/31

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

32 Terms

1
New cards

\frac{d}{dx} (x^n)

nx^{n-1}

2
New cards

\frac{d}{dx} (e^x)

e^x

3
New cards

\frac{d}{dx} (f + g)

f' + g'

4
New cards

\frac{d}{dx} (f - g)

f' - g'

5
New cards

\frac{d}{dx} (fg)

fg' + gf'

6
New cards

\frac{d}{dx} \left(\frac{f}{g}\right)

\frac{g f' - f g'}{g^2}

7
New cards

\frac{d}{dx}(f(g(x))

f'(g(x))g'(x)

8
New cards

\frac{d}{dx} (cx^n)

cnx^{n-1}

9
New cards

\frac{d}{dx} (\sin x)

\cos x

10
New cards

\frac{d}{dx} (\cos x)

-\sin x

11
New cards

\frac{d}{dx} (\tan x)

\sec^2(x)

12
New cards

\frac{d}{dx} (\sec x)

\sec x \tan x

13
New cards

\frac{d}{dx} (\csc x)

-\csc x \cot x

14
New cards

\frac{d}{dx} (\cot x)

-\csc^2(x)

15
New cards

\frac{d}{dx} (a^x)

a^x \ln a

16
New cards

Definition of f'(x)

\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}

17
New cards

\frac{d}{dx} (\sin(2x)) - Double Angle

2\sin x \cos x

18
New cards

\frac{d}{dx} (c)

0

19
New cards

\frac{d}{dx} (\ln |x|)

\frac{1}{x}

20
New cards

\frac{d}{dx} \log_a(x)

\frac{1}{x \ln a}

21
New cards

\frac{d}{dx} \text{ (position function)}

velocity

22
New cards

\frac{d}{dx} \text{ (acceleration function)}

jerk

23
New cards

\frac{d}{dx} \text{ (velocity function)}

acceleration

24
New cards

\lim_{x\to 0} \frac{\sin x}{x}

1

25
New cards

\frac{d}{dx} (\sin^{-1}(x))

\frac{1}{\sqrt{1-x^2}}

26
New cards

\frac{d}{dx} (\cos^{-1}(x))

-\frac{1}{\sqrt{1-x^2}}

27
New cards

\frac{d}{dx} (\tan^{-1}(x))

\frac{1}{1+x^2}

28
New cards

\frac{d}{dx} (\sec^{-1}(x))

\frac{1}{|x|\sqrt{x^2-1}}

29
New cards

\frac{d}{dx} (\csc^{-1}(x))

-\frac{1}{|x|\sqrt{x^2-1}}

30
New cards

\frac{d}{dx} (\cot^{-1}(x))

-\frac{1}{1+x^2}

31
New cards

average velocity

\frac{\Delta y}{\Delta x}

32
New cards

Instantaneous velocity

\lim_{\Delta x\to 0} \frac{\Delta y}{\Delta x}