1/31
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
\frac{d}{dx} (x^n)
nx^{n-1}
\frac{d}{dx} (e^x)
e^x
\frac{d}{dx} (f + g)
f' + g'
\frac{d}{dx} (f - g)
f' - g'
\frac{d}{dx} (fg)
fg' + gf'
\frac{d}{dx} \left(\frac{f}{g}\right)
\frac{g f' - f g'}{g^2}
\frac{d}{dx}(f(g(x))
f'(g(x))g'(x)
\frac{d}{dx} (cx^n)
cnx^{n-1}
\frac{d}{dx} (\sin x)
\cos x
\frac{d}{dx} (\cos x)
-\sin x
\frac{d}{dx} (\tan x)
\sec^2(x)
\frac{d}{dx} (\sec x)
\sec x \tan x
\frac{d}{dx} (\csc x)
-\csc x \cot x
\frac{d}{dx} (\cot x)
-\csc^2(x)
\frac{d}{dx} (a^x)
a^x \ln a
Definition of f'(x)
\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}
\frac{d}{dx} (\sin(2x)) - Double Angle
2\sin x \cos x
\frac{d}{dx} (c)
0
\frac{d}{dx} (\ln |x|)
\frac{1}{x}
\frac{d}{dx} \log_a(x)
\frac{1}{x \ln a}
\frac{d}{dx} \text{ (position function)}
velocity
\frac{d}{dx} \text{ (acceleration function)}
jerk
\frac{d}{dx} \text{ (velocity function)}
acceleration
\lim_{x\to 0} \frac{\sin x}{x}
1
\frac{d}{dx} (\sin^{-1}(x))
\frac{1}{\sqrt{1-x^2}}
\frac{d}{dx} (\cos^{-1}(x))
-\frac{1}{\sqrt{1-x^2}}
\frac{d}{dx} (\tan^{-1}(x))
\frac{1}{1+x^2}
\frac{d}{dx} (\sec^{-1}(x))
\frac{1}{|x|\sqrt{x^2-1}}
\frac{d}{dx} (\csc^{-1}(x))
-\frac{1}{|x|\sqrt{x^2-1}}
\frac{d}{dx} (\cot^{-1}(x))
-\frac{1}{1+x^2}
average velocity
\frac{\Delta y}{\Delta x}
Instantaneous velocity
\lim_{\Delta x\to 0} \frac{\Delta y}{\Delta x}