1/8
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
Change in Ep from Vg
\Delta E_{p}=m\Delta V_{g}
Force and Ep
F=\frac{\Delta E_{p}}{\Delta r}
Circular orbits
g=\frac{v^2}{R}
mg=\frac{mv^2}{R}
v=\sqrt{gR}
Orbital speed and period
v=\frac{2\pi r}{T}
T=\sqrt{\frac{4\pi^2r^3}{GM}}
\frac{T^2}{r^2}=\frac{4\pi^2}{GM} = constant
Energy of a satellite
E_{k}=\frac12\frac{GMm}{r}
E_{T}=-\frac12\frac{GMm}{r}=\frac12E_{p}=-E_{k}
Escape speed
v=v_{esc}=\sqrt{\frac{2GM}{R}}=\sqrt{2gR}
Electric potential energy Ep in terms of electric potential V
E_{p}=qV_{e}
Work in electric fields
W=\frac{kQq}{r} (Infinity to r)
W=q\Delta V (any two points)
W=qE\Delta r
Electric potential at a point from two charges
V_{e}=\frac{kq_1}{r_1}+\frac{kq_2}{r_2}