1/66
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
sin² θ + cos² θ
1
1 + tan² θ
sec² θ
1 + cot² θ
cosec² θ
sec θ + tan θ
1 / (sec θ - tan θ)
cosec θ + cot θ
1 / (cosec θ - cot θ)
sin⁴ θ + cos⁴ θ
1 - 2 sin² θ cos² θ
sin⁶ θ + cos⁶ θ
1 - 3 sin² θ cos² θ
Relation: π Radians and Degrees
π Radians = 180°
1 Radian (in degrees)
(180/π)° ≈ 57.3°
Minutes and Seconds conversion
1° = 60', 1' = 60''
Length of Arc (l)
l = rθ (θ in radians)
Area of Sector
(1/2)r²θ or (1/2)rl (θ in radians)
Sign: Anti-Clockwise (A.C.W) vs Clockwise (C.W)
A.C.W is (+); C.W is (-)
ASTC Rule (Quadrants I-IV)
I: All +, II: Sin/Cosec +, III: Tan/Cot +, IV: Cos/Sec +
sin(-θ), cos(-θ), tan(-θ)
-sin θ, cos θ, -tan θ
Function change rule (90 ± θ) or (270 ± θ)
sin↔cos, tan↔cot, sec↔cosec
Allied angle sign rule
Sign is determined by the quadrant of the ORIGINAL function
Function rule (180 ± θ) or (360 ± θ)
Trigonometric function remains the SAME
sin(A ± B)
sin A cos B ± cos A sin B
cos(A + B)
cos A cos B - sin A sin B
cos(A - B)
cos A cos B + sin A sin B
tan(A ± B)
(tan A ± tan B) / (1 ∓ tan A tan B)
cot(A + B)
(cot A cot B - 1) / (cot A + cot B)
cot(A - B)
(cot A cot B + 1) / (cot B - cot A)
tan(A + B + C)
(tan A + tan B + tan C - tan A tan B tan C) / (1 - (tan A tan B + tan B tan C + tan C tan A))
sin 2θ
2 sin θ cos θ OR (2 tan θ) / (1 + tan² θ)
cos 2θ (All 4 forms)
cos² θ - sin² θ; 2cos² θ - 1; 1 - 2sin² θ; (1 - tan² θ)/(1 + tan² θ)
tan 2θ
(2 tan θ) / (1 - tan² θ)
sin 3θ
3 sin θ - 4 sin³ θ
cos 3θ
4 cos³ θ - 3 cos θ
tan 3θ
(3 tan θ - tan³ θ) / (1 - 3 tan² θ)
1 + cos θ and 1 - cos θ
2 cos²(θ/2) and 2 sin²(θ/2)
sin C + sin D
2 sin((C+D)/2) cos((C-D)/2)
sin C - sin D
2 cos((C+D)/2) sin((C-D)/2)
cos C + cos D
2 cos((C+D)/2) cos((C-D)/2)
cos C - cos D
2 sin((C+D)/2) sin((D-C)/2)
2 sin A cos B
sin(A+B) + sin(A-B)
2 cos A sin B
sin(A+B) - sin(A-B)
2 cos A cos B
cos(A+B) + cos(A-B)
2 sin A sin B
cos(A-B) - cos(A+B)
sin 15° / cos 75°
(√3 - 1) / 2√2
cos 15° / sin 75°
(√3 + 1) / 2√2
tan 15° / cot 75°
2 - √3
cot 15° / tan 75°
2 + √3
tan 22.5° (tan π/8)
√2 - 1
sin 18° / cos 72°
(√5 - 1) / 4
cos 36° / sin 54°
(√5 + 1) / 4
tan(π/4 + θ)
(1 + tan θ) / (1 - tan θ)
sin(A+B) · sin(A-B)
sin² A - sin² B OR cos² B - cos² A
cos(A+B) · cos(A-B)
cos² A - sin² B OR cos² B - sin² A
sin θ · sin(60° - θ) · sin(60° + θ)
(1/4) sin 3θ
cos θ · cos(60° - θ) · cos(60° + θ)
(1/4) cos 3θ
tan θ · tan(60° - θ) · tan(60° + θ)
tan 3θ
If A+B+C = 180°: tan A + tan B + tan C
tan A tan B tan C
If A+B+C = 180°: ∑ tan(A/2) tan(B/2)
1
If A+B+C = 180°: sin 2A + sin 2B + sin 2C
4 sin A sin B sin C
If A+B+C = 180°: cos 2A + cos 2B + cos 2C
-1 - 4 cos A cos B cos C
If A+B+C = 180°: sin A + sin B + sin C
4 cos(A/2) cos(B/2) cos(C/2)
If A+B+C = 180°: cos A + cos B + cos C
1 + 4 sin(A/2) sin(B/2) sin(C/2)
cos A cos 2A cos 4A … cos(2^(n-1)A)
sin(2ⁿ A) / (2ⁿ sin A)
sin α + sin(α + β) + … + sin(α + (n-1)β)
[sin(nβ/2) / sin(β/2)] · sin[α + (n-1)β/2]
Range of y = a sin x + b cos x
[-√(a²+b²), √(a²+b²)]
AM-GM Inequality (+ve numbers)
(a+b)/2 ≥ √ab
Min value: a² tan² θ + b² cot² θ
2ab
Min value: a² sec² θ + b² cosec² θ
(a + b)²
Inequality for x ∈ (0, π/2)
tan x > x > sin x