trigo identity

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/66

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

67 Terms

1
New cards

sin² θ + cos² θ

1

2
New cards

1 + tan² θ

sec² θ

3
New cards

1 + cot² θ

cosec² θ

4
New cards

sec θ + tan θ

1 / (sec θ - tan θ)

5
New cards

cosec θ + cot θ

1 / (cosec θ - cot θ)

6
New cards

sin⁴ θ + cos⁴ θ

1 - 2 sin² θ cos² θ

7
New cards

sin⁶ θ + cos⁶ θ

1 - 3 sin² θ cos² θ

8
New cards

Relation: π Radians and Degrees

π Radians = 180°

9
New cards

1 Radian (in degrees)

(180/π)° ≈ 57.3°

10
New cards

Minutes and Seconds conversion

1° = 60', 1' = 60''

11
New cards

Length of Arc (l)

l = rθ (θ in radians)

12
New cards

Area of Sector

(1/2)r²θ or (1/2)rl (θ in radians)

13
New cards

Sign: Anti-Clockwise (A.C.W) vs Clockwise (C.W)

A.C.W is (+); C.W is (-)

14
New cards

ASTC Rule (Quadrants I-IV)

I: All +, II: Sin/Cosec +, III: Tan/Cot +, IV: Cos/Sec +

15
New cards

sin(-θ), cos(-θ), tan(-θ)

-sin θ, cos θ, -tan θ

16
New cards

Function change rule (90 ± θ) or (270 ± θ)

sin↔cos, tan↔cot, sec↔cosec

17
New cards

Allied angle sign rule

Sign is determined by the quadrant of the ORIGINAL function

18
New cards

Function rule (180 ± θ) or (360 ± θ)

Trigonometric function remains the SAME

19
New cards

sin(A ± B)

sin A cos B ± cos A sin B

20
New cards

cos(A + B)

cos A cos B - sin A sin B

21
New cards

cos(A - B)

cos A cos B + sin A sin B

22
New cards

tan(A ± B)

(tan A ± tan B) / (1 ∓ tan A tan B)

23
New cards

cot(A + B)

(cot A cot B - 1) / (cot A + cot B)

24
New cards

cot(A - B)

(cot A cot B + 1) / (cot B - cot A)

25
New cards

tan(A + B + C)

(tan A + tan B + tan C - tan A tan B tan C) / (1 - (tan A tan B + tan B tan C + tan C tan A))

26
New cards

sin 2θ

2 sin θ cos θ OR (2 tan θ) / (1 + tan² θ)

27
New cards

cos 2θ (All 4 forms)

cos² θ - sin² θ; 2cos² θ - 1; 1 - 2sin² θ; (1 - tan² θ)/(1 + tan² θ)

28
New cards

tan 2θ

(2 tan θ) / (1 - tan² θ)

29
New cards

sin 3θ

3 sin θ - 4 sin³ θ

30
New cards

cos 3θ

4 cos³ θ - 3 cos θ

31
New cards

tan 3θ

(3 tan θ - tan³ θ) / (1 - 3 tan² θ)

32
New cards

1 + cos θ and 1 - cos θ

2 cos²(θ/2) and 2 sin²(θ/2)

33
New cards

sin C + sin D

2 sin((C+D)/2) cos((C-D)/2)

34
New cards

sin C - sin D

2 cos((C+D)/2) sin((C-D)/2)

35
New cards

cos C + cos D

2 cos((C+D)/2) cos((C-D)/2)

36
New cards

cos C - cos D

2 sin((C+D)/2) sin((D-C)/2)

37
New cards

2 sin A cos B

sin(A+B) + sin(A-B)

38
New cards

2 cos A sin B

sin(A+B) - sin(A-B)

39
New cards

2 cos A cos B

cos(A+B) + cos(A-B)

40
New cards

2 sin A sin B

cos(A-B) - cos(A+B)

41
New cards

sin 15° / cos 75°

(√3 - 1) / 2√2

42
New cards

cos 15° / sin 75°

(√3 + 1) / 2√2

43
New cards

tan 15° / cot 75°

2 - √3

44
New cards

cot 15° / tan 75°

2 + √3

45
New cards

tan 22.5° (tan π/8)

√2 - 1

46
New cards

sin 18° / cos 72°

(√5 - 1) / 4

47
New cards

cos 36° / sin 54°

(√5 + 1) / 4

48
New cards

tan(π/4 + θ)

(1 + tan θ) / (1 - tan θ)

49
New cards

sin(A+B) · sin(A-B)

sin² A - sin² B OR cos² B - cos² A

50
New cards

cos(A+B) · cos(A-B)

cos² A - sin² B OR cos² B - sin² A

51
New cards

sin θ · sin(60° - θ) · sin(60° + θ)

(1/4) sin 3θ

52
New cards

cos θ · cos(60° - θ) · cos(60° + θ)

(1/4) cos 3θ

53
New cards

tan θ · tan(60° - θ) · tan(60° + θ)

tan 3θ

54
New cards

If A+B+C = 180°: tan A + tan B + tan C

tan A tan B tan C

55
New cards

If A+B+C = 180°: ∑ tan(A/2) tan(B/2)

1

56
New cards

If A+B+C = 180°: sin 2A + sin 2B + sin 2C

4 sin A sin B sin C

57
New cards

If A+B+C = 180°: cos 2A + cos 2B + cos 2C

-1 - 4 cos A cos B cos C

58
New cards

If A+B+C = 180°: sin A + sin B + sin C

4 cos(A/2) cos(B/2) cos(C/2)

59
New cards

If A+B+C = 180°: cos A + cos B + cos C

1 + 4 sin(A/2) sin(B/2) sin(C/2)

60
New cards

cos A cos 2A cos 4A … cos(2^(n-1)A)

sin(2ⁿ A) / (2ⁿ sin A)

61
New cards

sin α + sin(α + β) + … + sin(α + (n-1)β)

[sin(nβ/2) / sin(β/2)] · sin[α + (n-1)β/2]

62
New cards

Range of y = a sin x + b cos x

[-√(a²+b²), √(a²+b²)]

63
New cards

AM-GM Inequality (+ve numbers)

(a+b)/2 ≥ √ab

64
New cards

Min value: a² tan² θ + b² cot² θ

2ab

65
New cards

Min value: a² sec² θ + b² cosec² θ

(a + b)²

66
New cards

Inequality for x ∈ (0, π/2)

tan x > x > sin x

67
New cards