Inverse trig functions and their derivatives

0.0(0)
studied byStudied by 1 person
call kaiCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/19

encourage image

There's no tags or description

Looks like no tags are added yet.

Last updated 10:26 PM on 1/25/26
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No analytics yet

Send a link to your students to track their progress

20 Terms

1
New cards

f(x) = \sin^{-1}(x)

f'(x) = \frac{1}{\sqrt{1-x^{2}}}

2
New cards

f(x) = \cos^{-1}(x)

f'(x) = -\frac{1}{\sqrt{1-x^{2}}}

3
New cards

f(x) = \tan^{-1}(x)

f'(x) = \frac{1}{1+x^{2}}

4
New cards

f(x) = \cot^{-1}(x)

f'(x) = -\frac{1}{1+x^{2}}

5
New cards

f(x) = \sec^{-1}(x)

f'(x) = \frac{1}{|x|\sqrt{x^{2}-1}}

6
New cards

f(x) = \csc^{-1}(x)

f'(x) = -\frac{1}{|x|\sqrt{x^{2}-1}}

7
New cards

f(x) = \sinh^{-1}(x)

f'(x) = \frac{1}{\sqrt{x^{2}+1}}

8
New cards

f(x) = \cosh^{-1}(x)

f'(x) = \frac{1}{\sqrt{x^{2}-1}}

9
New cards

f(x) = \tanh^{-1}(x)

f'(x) = \frac{1}{1-x^{2}}, \quad |x| < 1

10
New cards

f(x) = \coth^{-1}(x)

f'(x) = \frac{1}{1-x^{2}}, \quad |x| > 1

11
New cards

f(x) = \text{sech}^{-1}(x)

f'(x) = -\frac{1}{x\sqrt{1-x^{2}}}

12
New cards

f(x) = \text{csch}^{-1}(x)

f'(x) = -\frac{1}{|x|\sqrt{1+x^{2}}}

13
New cards

f(x) = \sec^{-1}(x)

f'(x) = \frac{1}{|x|\sqrt{x^{2}-1}}

14
New cards

f(x) = \csc^{-1}(x)

f'(x) = -\frac{1}{|x|\sqrt{x^{2}-1}}

15
New cards

f(x) = \sinh^{-1}(x)

f'(x) = \frac{1}{\sqrt{x^{2}+1}}

16
New cards

f(x) = \cosh^{-1}(x)

f'(x) = \frac{1}{\sqrt{x^{2}-1}}

17
New cards

f(x) = \tanh^{-1}(x)

f'(x) = \frac{1}{1-x^{2}}, \quad |x| < 1

18
New cards

f(x) = \coth^{-1}(x)

f'(x) = \frac{1}{1-x^{2}}, \quad |x| > 1

19
New cards

f(x) = \text{sech}^{-1}(x)

f'(x) = -\frac{1}{x\sqrt{1-x^{2}}}

20
New cards

f(x) = \text{csch}^{-1}(x)

f'(x) = -\frac{1}{|x|\sqrt{1+x^{2}}}