(23.10.11) Mechanisms of Digestion and Absorption & Processing of Nutrients

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/28

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

29 Terms

1
New cards

Describe the general processes of digestion and absorption.

  • Digestion break down ingested foods into their chemical building blocks 

  • Only these molecules are small enough to be absorbed across wall of small intestine 

2
New cards

Define Digestion 

Catabolic process that breaks macromolecules down into monomers small enough for absorption 

  1. Intrinsic and accessory gland enzymes are involved in digestion 

  2. Enzymes carry out hydrolysis → whereby water is added to break chemical bonds 

3
New cards

This type of chemical reaction typically occurs as nutrients are digested in the body.

Hydrolysis → refers to the enzymatic breakdown of large polymers into monomers while adding the parts of a water molecule to the broken bonds

4
New cards

T/F: Most digestion occurs in the stomach 

FALSE 

Most digestion occurs in the SMALL INTESTINE, and is accomplished by enzymes secreted to the lumen that hydrolyze larger molecules into monomers 

5
New cards

Absorption of nutrients primarily occurs in the __________.

Small intestine

6
New cards

Define Absorption  

Process of moving substances from lumen of gut into body

  1. Tight junctions ensure molecules must pass through epithelial cell rather than between them 

  2. Lipid molecules can be absorbed passively through membrane, but polar molecules are absorbed by active transport 

  3. Most nutrients are absorbed before chyme reaches ileum 

<p><strong>Process of moving substances from lumen of gut into body</strong></p><ol><li><p><span style="color: blue;"><strong>Tight junctions</strong></span> ensure molecules must pass through <span style="color: purple;"><strong>epithelial cell</strong></span> rather than between them&nbsp;</p></li><li><p><strong><mark data-color="blue" style="background-color: blue; color: inherit;">Lipid molecules</mark></strong> can be absorbed <span style="color: rgb(0, 0, 0);"><strong>passively</strong></span> through membrane, but <strong><mark data-color="red" style="background-color: red; color: inherit;">polar molecules</mark></strong> are absorbed by <strong>active transport</strong>&nbsp;</p></li><li><p><span style="color: red;"><strong>Most nutrients are absorbed before chyme reaches ileum&nbsp;</strong></span></p></li></ol><p> </p>
7
New cards

List the order of Absorption of Molecules in the Intestine

  1. ENTERING epithelial cells across the apical membrane 

  2. In the lumen 

  3. Across the basolateral face of the interstitial fluid 

  4. DIFFUSE into capillaries or lacteals

<ol><li><p><span style="color: green;"><strong><span>ENTERING</span></strong></span> <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>epithelial cells</span></mark></strong></span>&nbsp;across the apical membrane&nbsp;</p></li><li><p>In the <span style="color: purple;"><strong>lumen</strong></span>&nbsp;</p></li><li><p>Across the <span style="color: purple;"><strong>basolateral face</strong></span> of the interstitial fluid&nbsp;</p></li><li><p><span style="color: red;"><strong><span>DIFFUSE</span></strong></span> into <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>capillaries or lacteals</span></mark></strong></span></p></li></ol><p></p>
8
New cards

How are carbohydrates absorbed?

ONLY monosaccharides can be absorbed

9
New cards

List the START & END Products of Carbohydrate Digestion

  1. BEGINS with the mouth as salivary amylase splits Polysaccharides into oligosaccharides

    • Starch

    • Glycogen

  2. Intestine, pancreatic amylase breaks down Polysaccharides oligosaccharides and disaccharides

    • Lactose

    • Maltose

    • Sucrose

  3. Brush border enzymes break oligo- and disaccharides Monosaccharides

    • Glucose

    • Frutose

    • Galactose

  4. Monosaccharides exit acrosss the basolateral membrane by facilitated difussion

<ol><li><p><strong><mark data-color="green" style="background-color: green; color: inherit;">BEGINS</mark></strong> with the <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>mouth</span></mark></strong></span> as <span style="color: green;"><strong><span>salivary amylase</span></strong></span> splits <span style="color: blue;"><strong><mark data-color="blue" style="background-color: blue; color: inherit;"><span>Polysaccharides</span></mark></strong></span> into <strong><span>oligosaccharides</span></strong></p><ul><li><p>Starch</p></li><li><p>Glycogen</p></li></ul></li><li><p><span style="color: purple;"><mark data-color="purple" style="background-color: purple; color: inherit;"><span>I</span></mark><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>ntestine</span></mark></strong></span>, <span style="color: green;"><strong><span>pancreatic amylase </span></strong></span>breaks down <span style="color: blue;"><strong><span>Polysaccharides</span></strong></span><strong><span> </span></strong><span>→ </span><strong><span>oligosaccharides </span></strong><span>and</span><strong><span> disaccharides</span></strong></p><ul><li><p>Lactose</p></li><li><p>Maltose</p></li><li><p>Sucrose</p></li></ul></li><li><p><span style="color: green;"><strong><span>Brush border enzymes </span></strong></span><span>break</span><strong><span> oligo- and disaccharides </span></strong><span>→ </span><span style="color: red;"><strong><span>Monosaccharides</span></strong></span></p><ul><li><p>Glucose</p></li><li><p>Frutose</p></li><li><p>Galactose</p></li></ul></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit;"><span>Monosaccharides exit</span></mark><span> </span></strong><span>acrosss the </span><span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>basolateral membrane</span></mark></strong></span><span> by </span><span style="color: purple;"><strong><em><u><span>facilitated difussion</span></u></em></strong></span></p></li></ol><p></p>
10
New cards

SUMMARY Carbohydrate digestion and absorption in the small intestine

  1. Pancreatic amylase breaks down starch and glycogen (Polysaccharides) → oligosaccharides and disaccharides  

  2. Brush border enzymes break oligosaccharides and disaccharides → monosaccharides

  3. Monosaccharides (glucose and galactose) are cotransported across the apical membrane of the absorptive epithelial cell 

    • This active transport uses the Na+ concentration gradient established by the Na+-K+ ATPase (pump) in the basolateral membrane

  4. Monosaccharides exit across the basolateral membrane by facilitated diffusion and enter the capillary via intercellular clefts 

<ol><li><p><span style="color: green;"><strong><span>Pancreatic amylase</span></strong></span> breaks down starch and glycogen (<span style="color: blue;"><strong><mark data-color="blue" style="background-color: blue; color: inherit;"><span>Polysaccharides</span></mark></strong></span>) → oligosaccharides and disaccharides&nbsp;&nbsp;</p></li><li><p><span style="color: green;"><strong><span>Brush border enzymes</span></strong></span> break <span style="color: blue;"><strong><span>oligosaccharides and disaccharides</span></strong></span> → monosaccharides</p></li><li><p><span style="color: red;"><strong><span>Monosaccharides</span></strong></span> (<span style="color: red;"><span>glucose and galactose</span></span>) are <span style="color: rgb(0, 0, 0);"><strong><span>cotransported</span></strong></span> across the <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>apical membrane of the absorptive epithelial cell</span></mark></strong><span>&nbsp;</span></span></p><ul><li><p>This active transport uses the Na+ concentration gradient established by the Na<sup>+</sup>-K<sup>+</sup> ATPase (pump) in the basolateral membrane</p></li></ul></li><li><p><span style="color: red;"><strong><span>Monosaccharides</span></strong><span> exit</span></span> across the <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>basolateral membrane</span></mark></strong></span> by facilitated diffusion and enter the <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>capillary</span></mark></strong></span> via intercellular clefts&nbsp;</p></li></ol><p></p>
11
New cards

Explain Effect and Cause of Lactose intolerance 

  • EFFECT 

    • Any lactose eaten remains undigested and creates an osmotic gradient in intestine that prevents water from being absorbed → resulting in diarrhea 

  • CAUSE 

    • Deficient amounts of lactase and cannot consume lactose

12
New cards

List the START & END Products of Protein Digestion

  1. BEGINS in stomach when pepsinogen is converted to pepsin (@ pH 1.5-2.5) 

    • Becomes inactive in high pH of duodenum 

    • Large polypeptides

  2. Small intestine, pancreatic protease break down Proteins and protein fragments into smaller pieces and some individual amino acids 

    • Small polypeptides

    • Small peptides 

  3. Brush border enzymes break oligo- and dipeptides into amino acids 

    • Amino acids (some dipeptides and tripeptides) 

  4. Amino acids are co-transpoted across the apical membrane of the absorptive epithelial cell

  5. Amino acids exit across the basolateral membrane via facilitated diffusion 

<ol><li><p><strong><mark data-color="green" style="background-color: green; color: inherit;">BEGINS</mark></strong>&nbsp;in <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>stomach</span></mark></strong></span> when <span style="color: green;"><strong><span>pepsinogen</span></strong></span> is converted to <span style="color: green;"><strong><span>pepsin</span></strong></span> (@ pH 1.5-2.5)&nbsp;</p><ul><li><p>Becomes inactive in high pH of duodenum&nbsp;</p></li><li><p>Large polypeptides</p></li></ul></li><li><p><span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>Small intestine</span></mark></strong></span>, <span style="color: green;"><strong><span>pancreatic protease</span></strong></span> break down <span style="color: blue;"><strong><mark data-color="blue" style="background-color: blue; color: inherit;"><span>Proteins</span></mark></strong></span> and <span style="color: blue;"><strong><span>protein fragments</span></strong></span> into <span style="color: rgb(0, 0, 0);"><strong>smaller pieces</strong></span> and <span style="color: rgb(0, 0, 0);"><strong><span>some individual amino acids&nbsp;</span></strong></span></p><ul><li><p>Small&nbsp;polypeptides</p></li><li><p>Small peptides&nbsp;</p></li></ul></li><li><p><span style="color: green;"><strong><span>Brush border enzymes </span></strong></span>break <strong>oligo- </strong>and <strong>dipeptides</strong> into <span style="color: red;"><strong><span>amino</span></strong></span><strong> </strong><span style="color: red;"><strong><span>acids</span></strong></span>&nbsp;</p><ul><li><p>Amino acids (some dipeptides and tripeptides)&nbsp;</p></li></ul></li><li><p><span style="color: red;"><strong><span>Amino acids</span></strong></span> are <span style="color: purple;"><strong><em><u><span>co-transpoted</span></u></em></strong></span> across the <strong>apical membrane</strong> of the absorptive epithelial cell</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit;">Amino acids exit</mark></strong> across the <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>basolateral membrane</span></mark></strong></span> via <span style="color: purple;"><strong><em><u><span>facilitated diffusion&nbsp;</span></u></em></strong></span></p></li></ol><p></p>
13
New cards

How is Protein digestion different from other macromolecule digestion?

Proteins digested into amino acids in the GI tract include not only dietary proteins but also enzyme proteins secreted into the GI tract lumen 

14
New cards

Which of the following digestive processes could be affected by a patient's taking a large amount of antacids?

→ Protein digestion

  • Protein digestion is partially accomplished by pepsin, an enzyme that works best in a pH range of 1.5 to 2.5

15
New cards

Which chemical activates the transformation of trypsinogen to trypsin?

Enteropeptidase → a protein produced by and bound to the membranes of intestinal cells. Contact with this protein converts trypsinogen to trypsin, the active form of the enzyme

<p><strong><span>Enteropeptidase</span></strong><span> → a protein produced by and </span><span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>bound to the membranes of intestinal cells</span></mark></strong></span><span>. Contact with this protein converts trypsinogen to trypsin, the active form of the enzyme</span></p>
16
New cards

SUMMARY Protein Digestion and absorption in the small intestine

  1. Pancreatic proteases break down proteins and protein fragments into smaller pieces and some individual amino acids

    • Trypsin & Chymotrypsin cleave protein into smaller peptides 

    • Carboxypeptidase takes off the amino acid at a time from end

  2. Brush border enzymes break protein fragments into amino acids

    • Amino-peptidases, Carboxypeptidases, and Dipeptidases break oligopeptides and dipeptides into amino acids

  3. Amino acids are cotransported across the apical membrane of the absorptive epithelial cell

    • This active transport uses the Na+ concentration gradient established by the Na+-K+ ATPase (pump) in the basolateral membrane

  4. Amnio acids exit across the basolateral membrane via facilaited diffusion and enter the capillary via intercellular clefts 

<ol><li><p><span style="color: green;"><strong><mark data-color="green" style="background-color: green; color: inherit;"><span>Pancreatic proteases</span></mark></strong></span> break down <span style="color: blue;"><strong><mark data-color="blue" style="background-color: blue; color: inherit;"><span>proteins</span></mark></strong></span> and protein fragments into <span style="color: red;"><span>smaller pieces</span></span> and some individual <span style="color: red;"><strong><span>amino acids</span></strong></span></p><ul><li><p><span style="color: green;"><strong><span>Trypsin</span></strong></span> &amp; <span style="color: green;"><strong><span>Chymotrypsin</span></strong></span> cleave protein into smaller peptides&nbsp;</p></li><li><p><span style="color: green;"><strong><span>Carboxypeptidase</span></strong></span> takes off the amino acid at a time from end</p></li></ul></li><li><p><span style="color: green;"><strong><mark data-color="green" style="background-color: green; color: inherit;"><span>Brush border enzymes</span></mark></strong></span> break <span style="color: blue;"><strong><span>protein fragments</span></strong></span> into <span style="color: red;"><strong><span>amino acids</span></strong></span></p><ul><li><p><span style="color: green;"><strong><span>Amino-peptidases</span></strong></span>, <span style="color: green;"><strong><span>Carboxypeptidases</span></strong></span>, and <span style="color: green;"><strong><span>Dipeptidases</span></strong></span> break oligopeptides and dipeptides into amino acids</p></li></ul></li><li><p><span style="color: red;"><strong><span>Amino acids</span></strong></span> are <strong>cotransported</strong> across the <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>apical membrane of the absorptive epithelial cell</span></mark></strong></span></p><ul><li><p>This active transport uses the Na+ concentration gradient established by the Na+-K+ ATPase (pump) in the basolateral membrane</p></li></ul></li><li><p><span style="color: red;"><strong><span>Amnio acids</span></strong><span> exit</span></span> across the <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>basolateral membrane</span></mark></strong></span> via facilaited diffusion and enter the <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>capillary</span></mark></strong></span> via intercellular clefts&nbsp;</p></li></ol><p></p>
17
New cards

Explain Cause and Effectof Unabsorbed Protein

  • CAUSE

    • Intact proteins are taken up by intestinal epithelial cells by endocytosis and are released into body

    • Most common in newborn infants because of immaturity of their intestinal mucosa 

  • EFFECT 

    • May result in food allergies as immune system “sees” intact proteins as antigenic and mounts an attack → Allergies usually disappear as mucosa matures

18
New cards

List the START & END Products of Lipid Digestion

  1. BEGINS unemulsified triglycerides

  2. Need pre-treatment with bile salts (from liver) that break large fat globules into smaller ones

    • Emulsification → triglycerides and their breadown products are insoluble in wate

  3. Pancreatic lipases hydrolyze triglycerides, yielding monoglycerides and free fatty acids 

  4. Monoglycerides and fatty acids combine with bile salts and lecithin to form micelles @ the plasma membrane, fatty acids and monoglycerides diffuse into epithelial cells of the mucosa

  5. Within the epithelial cellsfatty acids and monoglycerides are converted back into triglycerides, then combined with lecithin, cholesterol, and other lipids, to form Chylomicrons → which are exocytosed to the interstitial space, and taken into lacteals for transport 

<ol><li><p><strong><mark data-color="green" style="background-color: green; color: inherit;">BEGINS</mark></strong>&nbsp;unemulsified <span style="color: blue;"><strong><mark data-color="blue" style="background-color: blue; color: inherit;"><span>triglycerides</span></mark></strong></span></p></li><li><p>Need pre-treatment with <span style="color: green;"><strong><span>bile salts</span></strong></span>&nbsp;(from liver) that break large fat globules into smaller ones</p><ul><li><p><strong>Emulsification</strong> → triglycerides and their breadown products are insoluble in wate</p></li></ul></li><li><p><span style="color: green;"><strong><span>Pancreatic lipases</span></strong></span>&nbsp;hydrolyze <span style="color: blue;"><strong><span>triglycerides</span></strong></span>, yielding <span style="color: red;"><strong><span>monoglycerides</span></strong></span> and <span style="color: red;"><strong><span>free fatty acids</span></strong><span>&nbsp;</span></span></p></li><li><p><span style="color: red;"><strong><span>Monoglycerides and fatty acids</span></strong></span><span style="color: rgb(0, 0, 0);"><span> combine with </span><strong><span>bile salts</span></strong><span> and </span><strong><span>lecithin</span></strong><span> to form </span></span><span style="color: purple;"><strong><span>micelles</span></strong></span><span style="color: rgb(0, 0, 0);"><span> </span></span><span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>@ the plasma membrane</span></mark></strong></span><span style="color: rgb(0, 0, 0);"><span>, fatty acids and</span></span><span><span> monoglycerides diffuse into </span></span><span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>epithelial cells of the mucosa</span></mark></strong></span></p></li><li><p><span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>Within the epithelial cells</span></mark></strong></span><span><span>,&nbsp;</span></span><span style="color: red;"><strong><span>fatty acids and&nbsp;</span></strong></span><span style="color: red;"><strong><span>monoglycerides</span></strong></span><span> are converted back into </span><span style="color: blue;"><strong><span>triglycerides</span></strong></span><span>, then combined with </span><strong><span>lecithin</span></strong><span>, </span><strong><span>cholesterol</span></strong><span>, and other </span><strong><span>lipids</span></strong><span>, to form </span><span style="color: purple;"><strong><mark data-color="red" style="background-color: red; color: inherit;"><span>Chylomicrons</span></mark></strong></span><strong><mark data-color="red" style="background-color: red; color: inherit;"><span> → which are </span></mark></strong><span style="color: purple;"><strong><em><u><mark data-color="red" style="background-color: red; color: inherit;"><span>exocytosed</span></mark></u></em></strong></span><strong><mark data-color="red" style="background-color: red; color: inherit;"><span> to the interstitial space, and taken into lacteals for transport&nbsp;</span></mark></strong></p></li></ol><p></p>
19
New cards

SUMMARY Lipids Digestion and absorption in the small intestine

  1. Emulsification → Bile salts in the duodénum break fat globules into smaller fat droplets (increasing the surface area avialable to lipase enzyme) 

  2. Digestion → Pancreatic lipases hydrolyze triglycerides, yielding monoglycerides and free fatty acids 

  3. Micelle formation → Free fatty acids and monoglycerides assemble with bile salts, forming micelles 

    • Micelles ferry their contents to enterocytes

  4. Diffusion → Fatty acids and monoglycerides diffuse from micelles into enterocytes 

  5. Chylomicron formation → Fatty acids and monoglycerides are recombined and packaged with other fatty substances and proteins to form chylomicrons 

  6. Chylomicron transport → Chylomicrons are extruded from enterocytes by exocytosis, enter lacteals and are carried away from the intestine in lymph 

<ol><li><p><strong>Emulsification&nbsp;→ </strong><span style="color: green;"><strong><span>Bile salts</span></strong></span> in the <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;"><span>duodénum</span></mark></strong></span> break <span style="color: blue;"><strong><mark data-color="blue" style="background-color: blue; color: inherit;"><span>fat globules</span></mark></strong></span> into <span style="color: blue;"><strong><span>smaller fat droplets</span></strong></span> (increasing the surface area avialable to <span style="color: green;"><strong><span>lipase enzyme)</span></strong></span>&nbsp;</p></li><li><p><strong>Digestion → </strong><span style="color: green;"><strong><span>Pancreatic lipases</span></strong></span>&nbsp;hydrolyze <span style="color: blue;"><strong><span>triglycerides</span></strong></span>, yielding <span style="color: red;"><strong><span>monoglycerides</span></strong></span> and <span style="color: red;"><strong><span>free fatty acids</span></strong></span>&nbsp;</p></li><li><p><strong>Micelle formation&nbsp;→ </strong><span style="color: red;">Free fatty acids and monoglycerides</span> assemble with bile salts, forming <span style="color: purple;"><strong><span>micelles</span></strong></span>&nbsp;</p><ul><li><p>Micelles ferry their contents to enterocytes</p></li></ul></li><li><p><strong>Diffusion →</strong> <span style="color: red;">Fatty acids and&nbsp;monoglycerides</span> <strong>diffuse</strong> from <span style="color: purple;"><strong>micelles</strong></span> into <span style="color: purple;"><strong>enterocytes</strong></span>&nbsp;</p></li><li><p><strong>Chylomicron formation →&nbsp;</strong><span style="color: red;">Fatty acids and&nbsp;monoglycerides</span> are recombined and packaged with other fatty substances and proteins to form <span style="color: purple;"><strong>chylomicrons</strong></span>&nbsp;</p></li><li><p><strong>Chylomicron transport →</strong> <span style="color: purple;"><strong>Chylomicrons</strong></span> are extruded from enterocytes by <strong>exocytosis</strong>, enter <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;">lacteals</mark></strong></span> and are carried away from the intestine in <span style="color: purple;"><strong><mark data-color="purple" style="background-color: purple; color: inherit;">lymph</mark></strong></span>&nbsp;</p></li></ol><p></p>
20
New cards

SUMMARY by which Breakdown Products of Foodstuffs are Absorbed (TRANSPORTED) in the Small Intestine 

  1. Carbohydrates 

    • Salivary amylase digest polysaccharides (starch) in the mouth

    • Pancreatic amylase digest polysaccharides in the small intestine

    • Fructose molecules → are absorbed by facilitated diffusion into intestinal epithelial cells 

    • Glucose and galactose → are shuttled via secondary active transport with Na+ into intestinal epithelial cells

  2. Proteins 

    • Pepsin digests proteins in the stomach

    • Trypsin and Chymotrypsin digests proteins in the small intestine

    • Amino acids → are shuttled via secondary active transport with Na+ into intestinal epithelial cells

  3. Lipase

    • Gastric lipase digests lipids in the stomach 

    • Pancreatic lipase digests lipase in the small intestine 

    • Fatty acid and glycerides → must combine with bile salts to form → micelle → are absorbed by simple diffusion into intestinal epithelial cells

21
New cards

Where are the enzymes for digestion of disaccharides and small polypeptides located?

Brush border

22
New cards

Vitamin Absorption in the Small Intestine

  1. Fat-soluble vitamins (A, D, E, and K) are carried by micelle; diffuse into absorptive cells 

  2. Water-soluble vitamins (C and B) are absorbed by diffusion or by passive or active transporters

  3. Vitamin B12 (large, charged molecule) bind with intrinsic factor and is absorbed by endocytosis 

23
New cards

How are vitamins A, D, E, and K absorbed by the body?

→ by being incorporated into micelles

  • Fat-soluble vitamins are incorporated into micelles when fats are present.

24
New cards

Vitamin Absorption in the Large Intestine

  1. Vitamin K and B vitamins bacterial metabolism are absorbed

25
New cards

Electrolytes Absorption

Most ions are transported activity along length of small intestine

  1. Iron and calcium are absorbed in duodenum 

  2. Na+ absorption is coupled with active absorption of glucose and amino acids 

Usually amount in intestine is amount absorbed 

26
New cards

Explain how Iron & Calcium Absorption is Related to Need

  • Ionic iron is stored in mucosal cells with ferritin 

    • When needed, transported in blood by transferrin 

  • Ca2+ absorption is regulated by vitamin D and parathyroid hormone (PTH) 

27
New cards

Water Absorption

  • 9 L water → most from GI tract secretions, enter small intestine 

    • 95% is absorbed in the small intestine by osmosis 

    • Most of rest is absorbed in large intestine 

  • Net osmosis occurs if concentration gradient is established by active transport of solutes 

    • Water uptake is coupled with solute uptake 

28
New cards

Explain Cause and Effect of Malabsorption 

  • CAUSE 

    • ANYTHING that interferes with delivery of bile or pancreatic juice 

  • EFFECT 

    • Damaged intestinal mucosa (EX: bacterial infection or some antibiotics

29
New cards

Explain Cause, Effect, and Treatment of Gluten-Sensitive Enteropathy  

  • CAUSE 

    • Common malabsorption disease

    • Immune reaction to gluten

  • EFFECT 

    • Gluten causes immune cell damage to intestinal vili and brush border

  • TREATMENT

    • Eliminate gluten from diet

Explore top flashcards