1/14
CSCI 163
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No analytics yet
Send a link to your students to track their progress
Summation from (i=1 to n) of (i)
n(n+1)/2
Summation from (i=a to b) of (1)
b-a+1
Summation from (i=0 to n) of (a^i)
(a^(n+1)-1)/(a-1)
Summation from (i=1 to n) of (i²)
n(n + 1)(2n + 1)/6
lim(f(n)/g(n))=L
f(n)=theta(g(n))
lim(f(n)/g(n))=0
f(n)=O(g(n))
lim(f(n)/g(n))=0
f(n)=O(g(n))
lim(f(n)/g(n))=infinity
f(n)=Omega(g(n))
T (n)= T (n− 1) + f (n)
T(n)=T (0) + summation (i=1 to n) f(j)
Master Theorem variable restrictions
a>=1, b>1, d>=0
Master Variable format
T(n)=aT(n/b)+f(n^d)
Master Theorem, a<b^d
theta(n^d)
Master Theorem, a=b^d
theta(n^d*logn)
Master Theorem, a>b^d
theta(n^(logb(a))
Inductive proof steps
Inductive hypothesis, Inductive case (substitute in inductive hypothesis)