Precalculus Quiz 1 study guide

0.0(0)
studied byStudied by 0 people
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/34

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

35 Terms

1
New cards

A Relation

a set of ordered pairs like: (x,y). The set of first elements in the ordered pairs is the domain, while the set of second elements is the range.

2
New cards

State the domain and range of the following relation: {(5,2), (30,8), (15,3), (17,6), (14,9)

Domain: {5,30,15,17,14} → {5,14,15,17,30}

Range: {2,8,3,6,9} →{2,3,6,8,9}

3
New cards

The domain of a relation is all non zero positive integers less than 6. The range y of the relation is 3 less x, where x is a member of the domain. Write the relation as a table of values and as an equation. Then graph the relation.

Table:

x

y

1

2

3

4

5

2

1

0

-1

-2

Equation:

y=3-x

Graph:

4
New cards

A Function

a relation in which each element of the domain is paired with exactly one element in the range.

NO REPEATED DOMAIN

5
New cards

State the domain and range of each relation. Then state whether the relation is a function. No two pairs have the same first element.

a.) {(-2,1), (3,-1), (2,0)} →

b.) {(3,-1), (3,-2), (9,1)} →

a.) Domain: {-2, 3, 2} Range: {1, -1, 0}

A function because the Domain isn’t repeated.

b.) Domain: {3, 3, 9} Range: {-1, -2, 1}

Not a function because there is a repeated Domain

6
New cards

Evaluate each function for the given value:

a.) f(-4) if f(x) = 3x²-7x²-2x

b.) g(9) if g(x) = |6x-77|

c.) g(x+2) if g(x) = 2x-5

d.) f(c-5) if f(x) = x²-7x-4

a.) -296

b.) 23

c.) 2x-1

d.) c²-17c+56

7
New cards

State the domain of each function:

**In any fraction the denominator can’t be zero*

a.) f(x) = \frac{3}{x-1}

b.) g(x) = \frac{3-x}{5+x}

c.) f(x) = \sqrt{1x} \sqrt{\left(1\right)x}

a.) x - 1 ≠ 0

Domain: x ≠ 1

b.) 5 + x ≠ 0

Domain: x ≠ -5

c.) x ≠ any negative number. Because you can’t square root ( \sqrt{\left(1\right)x} ) a negative #

Domain: x ≥ 0

8
New cards

State the domain and range of each relation. The state whether the relation is a function or not. Explain.

  1. {(1,2),(2,4),(3,6),(0,0)}

  2. {(6,2),(3,4),(6,6),(3,0)}

  1. Domain: {1,2,3,0}

    Range: {2,4,6,0}

    It is a Function because the Domain has no repeating numbers.

  1. Domain: {6,3,6,3}

    Range: {2,4,6,0}

    It is NOT a Function because the Domain is repeating the number 6 and 3 twice.

9
New cards

State the domain and range. and if it is a function or not.

x

y

-3

0

3

6

4

0

-4

8

Domain: {-3,0,3,6}

Range: {4,0,-4,8}

This is a Function, in every input there is only one output.

10
New cards

Evaluate each function for the given value:

  1. f(-3) if f(x) = 4x³+x²-5x

  1. g(m+1) if g(x) = 2x²-4x+2

  1. f(-3) if f(x) = 4x³+x²-5x

    4(-3)³ + (-3)²-5(-3)

    → f(-3)= -84

  2. g(m+1) if g(x) = 2x²-4x+2

    2(m+1)²-4(m+1)+2

    2(m²+2m+1)-4m+4+2

    2m²+4m+2-4m-4+2

    2m²+2-2

    → g(m1) = 2m²

11
New cards

Given the table, evaluate the following.

  1. f(1) = x

  2. f(-2) = x

  3. f(2) = x

  4. f(x) = -7

  5. f(x) = -5

x

y

0

1

2

-1

-2

-5

-3

-1

-7

-9


  1. f(1) =-3

  2. f(-2) = -9

  3. f(2) = -1

  4. f(-1) = -7

  5. f(0) = -5

12
New cards

Given f(x) = 3x²-4 and g(x) = 4x+5, find each function.

a.) \left(f+g\right)\left(x\right)

b.) \left(f-g\right)\left(x\right)

c.) \left(f\cdot g\right)\left(x\right)

d.) \left(\frac{f}{g}\right)\left(x\right)

e.) \left(f+g\right)\left(3\right)

a.) \left(f+g\right)\left(x\right)

f(x)+g(x)

3x²-4+4x+5

= 3x²+1+4x

b.) \left(f-g\right)\left(x\right)

f(x)-f(x)

3x²-4-4x+5

= 3x²-4x+1

c.) \left(f\cdot g\right)\left(x\right)

f(x) \cdot g(x)

(3x²-4)(4x+5)

= 12x³+15x²-16x-20

d.) \left(\frac{f}{g}\right)\left(x\right)

=\frac{3x^2-4}{4x+5}

e.) \left(f+g\right)\left(3\right)

f(3) + g(3)

3(3)² -4 + 4(3)+5

27-4+12+5

23+17

= 40

13
New cards

Given f(x) = x²+7 and g(x) = x-3, find (f ∘ g)(x) and (g ∘ f)(x)

a) g(x) = x-3

f(g)= f(x-3)

f(x-3) = (x-3)²+7

f(x-3) = (x-3)(x-3)+7

f(x-3) = x²-3x-3x+9+7

f(x-3) = x²-6x+16

b) f(x)= x²+7

g(f) = g(x²+7)

g(x²+7) = x²+7-3

g(x²+7) = x²+4

14
New cards

Perform the indicated operation.

1) f(x) = 4x+5

Find f(f(-1))

2) f(x) = x+5

g(x) = -x²-5x

Find f(g(-4))

3) g(n) = n+1

f(n) = n²-n

Find g(f(8))

4) g(x) = 2x

Find g(g(-3))

5) g(n) = 4n

f(n) = 4n+2

Find g(f(n))

6) g(x) = 3x+3

f(x) = x³-3x²

Find g(f(x))

1) 9

2) a) 4

b) 9

3) a) 56

b) 57

4) a) -6

b) -12

5) 16n+8

Domain: \left(-\infty,\infty\right)

6) 3x³-9x²+3

Domain: \left(-\infty,\infty\right)

15
New cards

Adding and Subtracting Functions

Let f(x) = 4x+7 and g(x) = 12+x

What are f+g and f-g?

a) 4x+7+12+x

= 5x +19

b) 4x+7-(12+x)

= 5x-5

16
New cards

Multiplying and Diving Functions

Let f(x) = x² -9 and g(x) = x+3

What are f\cdot g and \frac{f}{g}

a) (x²-9) (x+3)

= x³+3x²-9x-27

b) \frac{x^2-9}{x+3}

17
New cards

Evaluate each composite value

  1. If f(x) = 3x-5 and g(x) = x², find (f ∘ g)(3) and (g ∘ f)(3)

  1. If f(x) = -9x-9 and g(x) = \sqrt{x-9} , find (f ∘ g)(10) and (f ∘ f)(-2)

  1. If f(x) = -4+2 and g(x) = \sqrt{x-8} , find (f ∘ g)(12) and (f ∘ f)(5)

  1. a.) (i) 9 (ii) 22

    b.) (i) 4 (ii) 16

  2. a.) (i) \sqrt1 (ii) -18

    b.) (i) 9 (ii) -90

  3. a.) (i) 2 (ii) -18

    b.) (i) -6 (ii) 74

18
New cards

Given f(x) = -9x-9+3 and g(x) = , findx^4(f ∘ g)(x)

f(g(x)) = g(x) = x^4

f(x) = -9x^4 + 3

19
New cards

Given f(x) = 2x-5 and g(x) = x+2, find (f ∘ g)(x) and (g ∘ f)(x)

a.) (f ∘ g)(x) =

f(g(x)) = x+2

2(x+2)-5

2x+4-5

f(x) = 2x-1

b.) (g∘ f)(x) =

g(f(x)) = 2x-5+2

g(x) = 2x- 3

20
New cards

Given g(x) = x²+6x and f(x) = 3x+1, find f(g(x)) and g(f(x))

a.) f(g(x)) =

x² + 6x

f(x) = 3(x²+6x)+1

f(x) = 3x² + 18x + 1

b.) g(f(x)) =

f(x) = 3x+1

g(x) = (3x+1)² + 6(3x+1)

g(x) = 9x²+6x+1+18x+6

g(x) = 9x² +24x + 7

21
New cards

Let g(x) = x-3 and h(x) = x²+6. What is (h ∘ g)(1)?

10

22
New cards

Domain

The set of all x - values that makes the function defined

23
New cards

Polynomial Function -

The DOMAIN of a Polynomial Function is always the set of Real Numbers. In a polynomial function the exponent must be positive.

24
New cards

Polynomial Function: Domain of f(x) = 3x-5

all real numbers or \left(-\infty,\infty\right)

25
New cards

Polynomial Function: Domain of g(x) = 2x³-1

all real numbers or \left(-\infty,\infty\right)

26
New cards

Radical Function

the inside of the square root for example : a\sqrt{b}x

a is the index

b is the radical

27
New cards

f(x) =\sqrt{x-4}

x - 4 ≥ 0

x ≥ 0

Domain = (4, \infty) or x 4 the domain cannot be less than 4

28
New cards

h(x) =\sqrt{3x-6}-2

3x - 6 ≥ 0

x ≥ 2

Domain = (2, \infty) or x 2 the domain cannot be less than 2

29
New cards

g(k) =3\sqrt{3k-9}

If the index is odd then the domain will always be all real numbers because there is no restriction.

Domain: \left(-\infty,\infty\right)

30
New cards

f(x) =4\sqrt{5x-12}

5x - 12 ≥ 0

x = \frac{12}{5}

Domain = [\frac{12}{5} \frac{12}{5} , \infty)

31
New cards

Rational Function

Fraction where numerator and denominator are both polynomials. A fraction cannot have a zero denominator. So whenever you have a fraction, set the denominator NOT EQUAL to zero. x ≠ 0

32
New cards

Find the domain of each rational function.

  1. f\left(x\right)=\frac{2x-3}{3x+5}

  1. f\left(x\right)=\frac{3}{5x-10}

  1. f\left(k\right)=\frac{k^2-64}{k^2-k-56}

  1. f\left(z\right)=\frac{z^2+9z+20}{z^2-25}

  1. x ≠ \frac{-5}{3}

    Domain : \left(-\infty,-\frac53\right)\cup\left(-\frac{5}{3,}\infty\right)

  2. x ≠ 2

    Domain : \left(-\infty,2\right)\cup\left(2,\infty\right)

    \left(-\infty,-\frac53\right)\cup\left(-\frac{5}{3,}\infty\right)

  3. k ≠ -7 and k ≠ 8

    Domain : (−∞,−7)∪(−7,8) ∪ (8,∞) (−∞,−7) (−7,8) ∪ (8,∞)

  4. x ≠ -5

    Domain : \left(-\infty,-5\right)\cup\left(-5,5)\right.\cup\left(5,\infty\right)

33
New cards

Fractions with Radicals

  1. f(x) = \frac{2x}{\sqrt{x+3}}

  1. f(x) = \frac{1}{\sqrt{x+2}}

  1. f(x) = \frac{\sqrt{x-3}}{x-7}

  1. g(x)= \frac{\sqrt{x-3}}{\sqrt{x-2}}

  1. h(x) = \frac{2x+7}{\sqrt{x^2+3x-28}}

  1. h(x) = \frac{x+3}{\sqrt{x^2-13x+40}}

  1. x+3 > 0

    D: x>-3

    [-3, )

  2. x+2>0

    D: x>-2

    [-2, )

  3. x ≥ 3

    D: [3,7) U (7, )

  4. x≥ 3

    x>2

  5. x< -7 and x>4

    x=4 x=-7

  6. x=5 x=8

    x<5 and x>8

34
New cards
35
New cards
  1. x ≠ 0

  2. x ≠ 0

  3. x ≠ 0

  4. x ≠ 0