1/34
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
A Relation
a set of ordered pairs like: (x,y). The set of first elements in the ordered pairs is the domain, while the set of second elements is the range.
State the domain and range of the following relation: {(5,2), (30,8), (15,3), (17,6), (14,9)
Domain: {5,30,15,17,14} → {5,14,15,17,30}
Range: {2,8,3,6,9} →{2,3,6,8,9}
The domain of a relation is all non zero positive integers less than 6. The range y of the relation is 3 less x, where x is a member of the domain. Write the relation as a table of values and as an equation. Then graph the relation.
Table:
x | y |
1 2 3 4 5 | 2 1 0 -1 -2 |
Equation:
y=3-x
Graph:
A Function
a relation in which each element of the domain is paired with exactly one element in the range.
NO REPEATED DOMAIN
State the domain and range of each relation. Then state whether the relation is a function. No two pairs have the same first element.
a.) {(-2,1), (3,-1), (2,0)} →
b.) {(3,-1), (3,-2), (9,1)} →
a.) Domain: {-2, 3, 2} Range: {1, -1, 0}
A function because the Domain isn’t repeated.
b.) Domain: {3, 3, 9} Range: {-1, -2, 1}
Not a function because there is a repeated Domain
Evaluate each function for the given value:
a.) f(-4) if f(x) = 3x²-7x²-2x
b.) g(9) if g(x) = |6x-77|
c.) g(x+2) if g(x) = 2x-5
d.) f(c-5) if f(x) = x²-7x-4
a.) -296
b.) 23
c.) 2x-1
d.) c²-17c+56
State the domain of each function:
**In any fraction the denominator can’t be zero*
a.) f(x) = \frac{3}{x-1}
b.) g(x) = \frac{3-x}{5+x}
c.) f(x) = \sqrt{1x} \sqrt{\left(1\right)x}
a.) x - 1 ≠ 0
Domain: x ≠ 1
b.) 5 + x ≠ 0
Domain: x ≠ -5
c.) x ≠ any negative number. Because you can’t square root ( \sqrt{\left(1\right)x} ) a negative #
Domain: x ≥ 0
State the domain and range of each relation. The state whether the relation is a function or not. Explain.
{(1,2),(2,4),(3,6),(0,0)}
{(6,2),(3,4),(6,6),(3,0)}
Domain: {1,2,3,0}
Range: {2,4,6,0}
It is a Function because the Domain has no repeating numbers.
Domain: {6,3,6,3}
Range: {2,4,6,0}
It is NOT a Function because the Domain is repeating the number 6 and 3 twice.
State the domain and range. and if it is a function or not.
x | y |
-3 0 3 6 | 4 0 -4 8 |
Domain: {-3,0,3,6}
Range: {4,0,-4,8}
This is a Function, in every input there is only one output.
Evaluate each function for the given value:
f(-3) if f(x) = 4x³+x²-5x
g(m+1) if g(x) = 2x²-4x+2
f(-3) if f(x) = 4x³+x²-5x
4(-3)³ + (-3)²-5(-3)
→ f(-3)= -84
g(m+1) if g(x) = 2x²-4x+2
2(m+1)²-4(m+1)+2
2(m²+2m+1)-4m+4+2
2m²+4m+2-4m-4+2
2m²+2-2
→ g(m1) = 2m²
Given the table, evaluate the following.
f(1) = x
f(-2) = x
f(2) = x
f(x) = -7
f(x) = -5
x | y |
0 1 2 -1 -2 | -5 -3 -1 -7 -9 |
f(1) =-3
f(-2) = -9
f(2) = -1
f(-1) = -7
f(0) = -5
Given f(x) = 3x²-4 and g(x) = 4x+5, find each function.
a.) \left(f+g\right)\left(x\right)
b.) \left(f-g\right)\left(x\right)
c.) \left(f\cdot g\right)\left(x\right)
d.) \left(\frac{f}{g}\right)\left(x\right)
e.) \left(f+g\right)\left(3\right)
a.) \left(f+g\right)\left(x\right)
f(x)+g(x)
3x²-4+4x+5
= 3x²+1+4x
b.) \left(f-g\right)\left(x\right)
f(x)-f(x)
3x²-4-4x+5
= 3x²-4x+1
c.) \left(f\cdot g\right)\left(x\right)
f(x) \cdot g(x)
(3x²-4)(4x+5)
= 12x³+15x²-16x-20
d.) \left(\frac{f}{g}\right)\left(x\right)
=\frac{3x^2-4}{4x+5}
e.) \left(f+g\right)\left(3\right)
f(3) + g(3)
3(3)² -4 + 4(3)+5
27-4+12+5
23+17
= 40
Given f(x) = x²+7 and g(x) = x-3, find (f ∘ g)(x) and (g ∘ f)(x)
a) g(x) = x-3
f(g)= f(x-3)
f(x-3) = (x-3)²+7
f(x-3) = (x-3)(x-3)+7
f(x-3) = x²-3x-3x+9+7
f(x-3) = x²-6x+16
b) f(x)= x²+7
g(f) = g(x²+7)
g(x²+7) = x²+7-3
g(x²+7) = x²+4
Perform the indicated operation.
1) f(x) = 4x+5
Find f(f(-1))
2) f(x) = x+5
g(x) = -x²-5x
Find f(g(-4))
3) g(n) = n+1
f(n) = n²-n
Find g(f(8))
4) g(x) = 2x
Find g(g(-3))
5) g(n) = 4n
f(n) = 4n+2
Find g(f(n))
6) g(x) = 3x+3
f(x) = x³-3x²
Find g(f(x))
1) 9
2) a) 4
b) 9
3) a) 56
b) 57
4) a) -6
b) -12
5) 16n+8
Domain: \left(-\infty,\infty\right)
6) 3x³-9x²+3
Domain: \left(-\infty,\infty\right)
Adding and Subtracting Functions
Let f(x) = 4x+7 and g(x) = 12+x
What are f+g and f-g?
a) 4x+7+12+x
= 5x +19
b) 4x+7-(12+x)
= 5x-5
Multiplying and Diving Functions
Let f(x) = x² -9 and g(x) = x+3
What are f\cdot g and \frac{f}{g}
a) (x²-9) (x+3)
= x³+3x²-9x-27
b) \frac{x^2-9}{x+3}
Evaluate each composite value
If f(x) = 3x-5 and g(x) = x², find (f ∘ g)(3) and (g ∘ f)(3)
If f(x) = -9x-9 and g(x) = \sqrt{x-9} , find (f ∘ g)(10) and (f ∘ f)(-2)
If f(x) = -4+2 and g(x) = \sqrt{x-8} , find (f ∘ g)(12) and (f ∘ f)(5)
a.) (i) 9 (ii) 22
b.) (i) 4 (ii) 16
a.) (i) \sqrt1 (ii) -18
b.) (i) 9 (ii) -90
a.) (i) 2 (ii) -18
b.) (i) -6 (ii) 74
Given f(x) = -9x-9+3 and g(x) = , findx^4(f ∘ g)(x)
f(g(x)) = g(x) = x^4
f(x) = -9x^4 + 3
Given f(x) = 2x-5 and g(x) = x+2, find (f ∘ g)(x) and (g ∘ f)(x)
a.) (f ∘ g)(x) =
f(g(x)) = x+2
2(x+2)-5
2x+4-5
f(x) = 2x-1
b.) (g∘ f)(x) =
g(f(x)) = 2x-5+2
g(x) = 2x- 3
Given g(x) = x²+6x and f(x) = 3x+1, find f(g(x)) and g(f(x))
a.) f(g(x)) =
x² + 6x
f(x) = 3(x²+6x)+1
f(x) = 3x² + 18x + 1
b.) g(f(x)) =
f(x) = 3x+1
g(x) = (3x+1)² + 6(3x+1)
g(x) = 9x²+6x+1+18x+6
g(x) = 9x² +24x + 7
Let g(x) = x-3 and h(x) = x²+6. What is (h ∘ g)(1)?
10
Domain
The set of all x - values that makes the function defined
Polynomial Function -
The DOMAIN of a Polynomial Function is always the set of Real Numbers. In a polynomial function the exponent must be positive.
Polynomial Function: Domain of f(x) = 3x-5
all real numbers or \left(-\infty,\infty\right)
Polynomial Function: Domain of g(x) = 2x³-1
all real numbers or \left(-\infty,\infty\right)
Radical Function
the inside of the square root for example : a\sqrt{b}x
a is the index
b is the radical
f(x) =\sqrt{x-4}
x - 4 ≥ 0
x ≥ 0
Domain = (4, \infty) or x ≥ 4 the domain cannot be less than 4
h(x) =\sqrt{3x-6}-2
3x - 6 ≥ 0
x ≥ 2
Domain = (2, \infty) or x ≥ 2 the domain cannot be less than 2
g(k) =3\sqrt{3k-9}
If the index is odd then the domain will always be all real numbers because there is no restriction.
Domain: \left(-\infty,\infty\right)
f(x) =4\sqrt{5x-12}
5x - 12 ≥ 0
x = \frac{12}{5}
Domain = [\frac{12}{5} \frac{12}{5} , \infty)
Rational Function
Fraction where numerator and denominator are both polynomials. A fraction cannot have a zero denominator. So whenever you have a fraction, set the denominator NOT EQUAL to zero. x ≠ 0
Find the domain of each rational function.
f\left(x\right)=\frac{2x-3}{3x+5}
f\left(x\right)=\frac{3}{5x-10}
f\left(k\right)=\frac{k^2-64}{k^2-k-56}
f\left(z\right)=\frac{z^2+9z+20}{z^2-25}
x ≠ \frac{-5}{3}
Domain : \left(-\infty,-\frac53\right)\cup\left(-\frac{5}{3,}\infty\right)
x ≠ 2
Domain : \left(-\infty,2\right)\cup\left(2,\infty\right)
\left(-\infty,-\frac53\right)\cup\left(-\frac{5}{3,}\infty\right)
k ≠ -7 and k ≠ 8
Domain : (−∞,−7)∪(−7,8) ∪ (8,∞) (−∞,−7) ∪ (−7,8) ∪ (8,∞)
x ≠ -5
Domain : \left(-\infty,-5\right)\cup\left(-5,5)\right.\cup\left(5,\infty\right)
Fractions with Radicals
f(x) = \frac{2x}{\sqrt{x+3}}
f(x) = \frac{1}{\sqrt{x+2}}
f(x) = \frac{\sqrt{x-3}}{x-7}
g(x)= \frac{\sqrt{x-3}}{\sqrt{x-2}}
h(x) = \frac{2x+7}{\sqrt{x^2+3x-28}}
h(x) = \frac{x+3}{\sqrt{x^2-13x+40}}
x+3 > 0
D: x>-3
[-3, ♾)
x+2>0
D: x>-2
[-2, ♾)
x ≥ 3
D: [3,7) U (7, ♾ )
x≥ 3
x>2
x< -7 and x>4
x=4 x=-7
x=5 x=8
x<5 and x>8
x ≠ 0
x ≠ 0
x ≠ 0
x ≠ 0