1/23
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Pythagorean Identities
\sin^2x+\cos^2x=1
1+\cot^2x=\csc^2x
\tan^2x+1=\sec^2x
Sum and Difference Identities
\cos\left(A\pm B\right)=\cos A\cos B\mp\sin A\sin B
\sin\left(A\pm B\right)=\sin A\cos B\pm\cos A\sin B
Double Angle
\sin2x=2\sin x\cos x
\cos2x=1-2\sin^2x
=2\cos^2x-1
=\cos^2x-\sin^2x
Degree Reducing Identities
\cos^2x=\frac12\left(1+\cos2x\right)
\sin^2x=\frac12\left(1-\cos2x\right)
f\left(x\right)=\sin x
f^{\prime}\left(x\right)=\cos x
f\left(x\right)=\cos x
f^{\prime}\left(x\right)=-\sin x
f\left(x\right)=\tan x
f^{\prime}\left(x\right)=\sec^2x
f\left(x\right)=\cot x
f^{\prime}\left(x\right)=-\csc^2x
f\left(x\right)=\sec x
f^{\prime}\left(x\right)=\sec x\tan x
f\left(x\right)=\csc x
f^{\prime}\left(x\right)=-\csc x\cot x
f\left(x\right)=\ln x
f^{\prime}\left(x\right)=\frac{1}{x}
f\left(x\right)=e^{x}
f^{\prime}\left(x\right)=e^{x}
f\left(x\right)=a^{x}
f^{\prime}\left(x\right)=a^{x}\ln\left(a\right)
f\left(x\right)=\log_{a}\left(x\right)
f^{\prime}\left(x\right)=\frac{1}{x\ln\left(a\right)}
\int\tan x
\ln\left|\sec x\right|+C
-\ln\left|\cos x\right|+C
\int\cot x
\ln\left|\sin x\right|+C
\int\csc x
\ln\left|\csc x-\cot x\right|+C
-\ln\left|\csc x+\cot x\right|+C
\int\sec x
\ln\left|\sec x+\tan x\right|+C
Arc Length
\int_{a}^{b}\sqrt{1+\left(\frac{\differentialD y}{\differentialD x}\right)^2}
Surface Area
2\pi\int_{a}^{b}r\sqrt{1+\left(\frac{\differentialD y}{\differentialD x}\right)^2}
Mean Value Theorem
f^{\prime}\left(c\right)=\frac{f\left(b\right)-f\left(a\right)}{b-a}
Average Value Theorem
f^{\prime}\left(c\right)=\frac{1}{b-a}\int_{a}^{b}f\left(x\right)
Integration By Parts
\int udv=vu-\int vdu
Find the Derivative Equation
f^{\prime}\left(x\right)=\lim_{h\to0}\frac{f\left(x+h\right)-f\left(x\right)}{h}