1/68
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Sin(a+b)
sin(a)cos(b) + cos(a)sin(b).
Sin(a-b)
sin(a)cos(b) - cos(a)sin(b)
Cos(A+B)
cos(a)cos(b) - sin(a)sin(b)
Cos(A-B)
cos(a)cos(b) + sin(a)sin(b)
Tan(A+B)
Tan(A-B)
Range of sinx and cosx
-1 to 1
Range of tanx
all real numbers
180°
π radian
Sin(-x)
-sinx
Cos(-x)
Cosx
Tan(-x)
-tanx
Sin15°=Cos75°=
Cos15°=Sin75°=
Tan15°=Cot75°=
Cot 15°=Tan75°=
Sin18°=Cos72°=
Cos54°=Sin36°=
Sin54°=Cos36°=
Sin72°=Cos18°=
Sin22.5°=
Cos22.5°
Tan22.5°
Cot22.5°
Tan(45+x)
Tan(45-x)
Sin(A+B) × Sin(A-B)
Sin²A - Sin²B
Cos(A+B) × Cos(A-B)
Cos²A - Sin²B
If a=b+c,
TanA × TanB × TanC = TanA - TanB - TanC
Sin2A
2SinACosA
Tan2A
Cos2A (in terms of cos and sin)
Cos²A - Sin²A
Cos2A (in terms of sin only)
1 - 2sin²A
Cos2A (in terms of cos only)
2Cos²A - 1
1 - Cos2A
2Sin²A
1 + Cos2A
2Cos²A
1 + Sin2A
(CosA + SinA)²
1 - Sin2A
(CosA - SinA)²
SinA (in terms of 2A)
CosA (in terms of 2A)
TanA (in terms of 2A)
Sin2A (in terms of tanA)
Cos2A
Tan²A
If a range of a quadratic is required, we need to find:
f(-1), f(1), f(-b/2a)
Range of SinnA + CosnA
f(0), f(45)
CotA - TanA
2Cot2A
Sin3A
3SinA - 4Sin³A
Cos3A
4Cos³A - 3CosA
Tan3A
SinA Sin(60-A) Sin(60+A)
¼ Sin3A
CosA Cos(60-A) Cos(60+A)
¼ Cos3A
CosA Cos2A Cos2²A…Cos2n-1A (n=no. of terms)
Range of asinA + bCosa
SinC+SinD
SinC - SinD
CosC + CosD
CosC - CosD
2SinACosB
Sin(A+B) + Sin(A-B)
2CosASinB
Sin(A+B) - Sin(A-B)
2CosACosB
Cos(A+B) + Cos(A-B)
2SinASinB
Cos(A-B) - Cos(A+B)
sina + sin(a+d) + sin(a+2d) +…+ sin(a+(n-1)D)
cosa + cos(a+d) + cos(a+2d) +…+ cos(a+(n-1)d)
if sinx = sinα
x=nπ + (-1)nα (α = (-π/2, π/2))
If cosx = cosα
x= 2nπ +- α (α = (0, π))
tanx = tanα
x= nπ + α (α = (-π/2, π/2))
sin²x = sin²α, cos²x = cos²α, tan²x = tan²α
x = nπ +- α