12 - Countercurrent Mechanism of Distal Tubule and Collecting Duct

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/12

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

13 Terms

1
New cards

countercurrent mechanism

mechanism for kidney concentrating urine

  • kidney can concentrate urine 4-fold (1200 mOsm/L) or dilute urine 7-fold (40mOsm/L) with respect to plasma

  • plasma in osmotic equilibrium at 290 mOsm/L

2
New cards

countercurrent components

  • glomerulus → filtrate is iso-osmolar (290 mOsm/L)

  • proximal tubule → 2/3 reabsorption of water and solutes

  • descending limb → filtrate becomes hyper-osmolar (1200 mOsm/L)

    • water reabsorption via aquaporin 1 and paracellular transport

    • impermeable to solutes

  • ascending limb 

    • NaCl reabsorbed paracellularly

    • impermeable to water

  • thick ascending limb → filtrate becomes hypo-osmolar (100mOsm/L)

    • solute reabsorption of Na+, K+, and Cl- via Na+-K+-2Cl- transporter

    • impermeable to water

  • distal tubule and collecting duct → solute and water reabsorption is tightly regulated 

    • osmolality of final urine is a function of the degree to which the fluid in collecting ducts is allowed to equilibrate with interstitium 

3
New cards

hyperosmotic gradient

as filtrate moves from cortex to medulla, filtrate becomes more concentrated

  • 50% of gradient due to urea

    • urea recycling (reabsorbed and secreted) between collecting ducts and loop enhances gradient

  • 50% of gradient due to NaCl

4
New cards

thick ascending limb

cells do not have brush border, so reabsorption is not as abundant

  • Na+/2Cl-/K+ co-transporter (apical)→ macula densa sensor that detects NaCl in filtrate for TGF response

    • responsible for 20-30% of hyperosmotic gradient

    • K+ back leak is key to keep the transporter working, but also creates a negative charge in lumen to push Na+ and K+ paracellularly

    • ADH increases activity of transporter

    • diuretic: furosemid (Lasix)

  • Na+/K+-ATPase (basolateral) → pumps Na+ out and K+ in

  • Cl-/K+ co-transporter (basolateral) → pumps Cl- and K+ out

  • K+ and Cl- pores (basolateral) → leaks K+ and Cl-

<p>cells do not have brush border, so reabsorption is not as abundant</p><ul><li><p>Na<sup>+</sup>/2Cl<sup>-</sup>/K<sup>+</sup> co-transporter (apical)→ macula densa sensor that detects NaCl in filtrate for TGF response</p><ul><li><p>responsible for 20-30% of hyperosmotic gradient</p></li><li><p>K<sup>+</sup><sub><sup> </sup></sub>back leak is key to keep the transporter working, but also creates a negative charge in lumen to push Na<sup>+</sup> and K<sup>+</sup> paracellularly</p></li><li><p>ADH increases activity of transporter</p></li><li><p>diuretic: furosemid (Lasix)</p></li></ul></li><li><p>Na<sup>+</sup>/K<sup>+</sup>-ATPase (basolateral) → pumps Na<sup>+ </sup>out and K<sup>+ </sup>in</p></li><li><p>Cl<sup>-</sup>/K<sup>+</sup>&nbsp;co-transporter (basolateral) → pumps<sup>&nbsp;</sup>Cl<sup>-</sup> and K<sup>+</sup>&nbsp;out</p></li><li><p>K<sup>+</sup>&nbsp;and Cl<sup>-</sup>&nbsp;pores (basolateral) → leaks K<sup>+</sup>&nbsp;and Cl<sup>-</sup></p></li></ul><p></p>
5
New cards

convoluted distal tubule

contain type 1 cells closer to macula densa, and type 2 cells closer to collecting duct

  • type 1 cells:

    • Na+/Cl- co-transporter (NCC, apical) → pumps Na+ and Cl- into cell

      • upregulated by AngII, aldosterone, ADH

      • diuretic: thiazide derivatives

    • Na+/K+-ATPase (basolateral) → pumps Na+ out and K+ in

    • Cl- pores (basolateral) → leaks Cl- into blood

    • K+ leaky channels (apical/basolateral) → leaks K+ into blood and lumen

  • type 2 cells:

    • NCC (apical)

    • epithelial Na+ channel (ENaC, apical) → pumps Na+ into cell

      • upregulated by aldosterone and increased tubular flow

      • downregulated by ANP

      • diuretic: spironolactone and amiloride

    • Na+/K+-ATPase (basolateral) → pumps Na+ out and K+ in

    • Cl- pores (basolateral) → leaks Cl- into blood

    • K+ leaky channels (apical/basolateral) → leaks K+ into blood and lumen

<p>contain type 1 cells closer to macula densa, and type 2 cells closer to collecting duct</p><ul><li><p>type 1 cells:</p><ul><li><p>Na<sup>+</sup>/Cl<sup>-</sup> co-transporter (NCC, apical) → pumps Na<sup>+</sup> and Cl<sup>-</sup> into cell</p><ul><li><p>upregulated by AngII, aldosterone, ADH</p></li><li><p>diuretic: thiazide derivatives</p></li></ul></li><li><p>Na<sup>+</sup>/K<sup>+</sup>-ATPase (basolateral) → pumps Na<sup>+</sup>&nbsp;out and K<sup>+</sup>&nbsp;in</p></li><li><p>Cl<sup>-</sup>&nbsp;pores (basolateral) → leaks Cl<sup>-</sup>&nbsp;into blood</p></li><li><p>K<sup>+</sup>&nbsp;leaky channels (apical/basolateral) → leaks K<sup>+</sup> into blood and lumen</p></li></ul></li><li><p>type 2 cells:</p><ul><li><p>NCC (apical)</p></li><li><p>epithelial Na<sup>+</sup> channel (ENaC, apical) → pumps Na<sup>+</sup> into cell</p><ul><li><p>upregulated by aldosterone and increased tubular flow</p></li><li><p>downregulated by ANP</p></li><li><p>diuretic: spironolactone and amiloride</p></li></ul></li><li><p>Na<sup>+</sup>/K<sup>+</sup>-ATPase (basolateral) → pumps Na<sup>+</sup>&nbsp;out and K<sup>+</sup>&nbsp;in</p></li><li><p>Cl<sup>-</sup>&nbsp;pores (basolateral) → leaks Cl<sup>-</sup>&nbsp;into blood</p></li><li><p>K<sup>+</sup>&nbsp;leaky channels (apical/basolateral) → leaks K<sup>+</sup> into blood and lumen</p></li></ul></li></ul><p></p>
6
New cards

collecting duct

contain principal cells and intercalated cells, with more principal cells at 2:1 to 3:1 ratio

  • principal cells

    • ENaC (apical)

    • K+ excretion (apical) → Big K+ (BK) channel and renal outer medulla K+ (ROMK) channels

    • aquaporins (apical/basolateral)

    • Na+/K+-ATPase (basolateral)

  • ⍺-intercalated cells (99% of intercalated cells)

    • reabsorbs HCO3-

    • excretes H+ (apical) → H+-ATPase and H+/K+-ATPase (counter-transporter)

    • reabsorbs K+ (basolateral) → leaky channels to compensate for high K+ excretion from principal cells

  • β-intercalated cells (1% of intercalated cells)

    • opposite polarization → secretes HCO3- and reabsorbs H+

<p>contain principal cells and intercalated cells, with more principal cells at 2:1 to 3:1 ratio</p><ul><li><p>principal cells</p><ul><li><p>ENaC (apical)</p></li><li><p>K<sup>+ </sup>excretion (apical) → Big K<sup>+ </sup>(BK) channel and renal outer medulla K<sup>+</sup> (ROMK) channels</p></li><li><p>aquaporins (apical/basolateral)</p></li><li><p>Na<sup>+</sup>/K<sup>+</sup>-ATPase (basolateral)</p></li></ul></li><li><p>⍺-intercalated cells (99% of intercalated cells)</p><ul><li><p>reabsorbs HCO<sub>3</sub><sup>- </sup></p></li><li><p>excretes H<sup>+</sup> (apical) → H<sup>+</sup>-ATPase and H<sup>+</sup>/K<sup>+</sup>-ATPase (counter-transporter)</p></li><li><p>reabsorbs K<sup>+</sup>&nbsp;(basolateral) → leaky channels to compensate for high K<sup>+</sup>&nbsp;excretion from principal cells</p></li></ul></li><li><p>β-intercalated cells (1% of intercalated cells)</p><ul><li><p>opposite polarization → secretes HCO<sub>3</sub><sup>-</sup>&nbsp;and reabsorbs H<sup>+</sup></p></li></ul></li></ul><p></p>
7
New cards

diuretics

drugs that increase urine production by blocking solute reabsorption, increasing amount of sodium and water in filtrate to be excreted as urine

  • Na+/2Cl-/K+ → loop diuretics (furosemide/Lasix)

  • NCC → thiazide derivatives (chlorothiazide, hydrochlorothiazide)

  • ENaC → amiloride, spironolactone

  • osmotic → mannitol

  • carbonic anhydrase → blocks HCO3- reabsorption in proximal tubule

8
New cards

aldosterone

increases Na+ reabsorption and K+ secretion

  • aldosterone activates intracellular receptor

    • increases ROMK expression

    • increases Na+/K+-ATPase expression

    • SGK1 expression

      • active SGK1 phosphorylates NEDD4

      • NEDD4 phosphorylation prevents ENaC ubiquitination for degradation

  • released from adrenal gland in cortex

  • AngII activates its release during volume depletion and lowered BP

  • increased K+ activates release

<p>increases Na<sup>+</sup>&nbsp;reabsorption and K<sup>+</sup> secretion</p><ul><li><p>aldosterone activates intracellular receptor</p><ul><li><p>increases ROMK expression</p></li><li><p>increases Na<sup>+</sup>/K<sup>+</sup>-ATPase expression</p></li><li><p>SGK1 expression</p><ul><li><p>active SGK1 phosphorylates NEDD4 </p></li><li><p>NEDD4 phosphorylation prevents ENaC ubiquitination for degradation</p></li></ul></li></ul></li><li><p>released from adrenal gland in cortex</p></li><li><p>AngII activates its release during volume depletion and lowered BP</p></li><li><p>increased K<sup>+</sup>&nbsp;activates release</p></li></ul><p></p>
9
New cards

aldosterone pathologies

  • hyperaldosteronism → Conn’s syndrome

    • 33% caused by adrenal adenoma, 66-67% caused by enlarged hyperplasia of adrenal gland

    • increased Na+ reabsorption, leading to increased BP

  • hypoaldosteronism → Addison’s syndrome, diabetic nephropathy

10
New cards

how would increase in Na+ intake affect aldosterone levels?

aldosterone would decrease → to decrease Na+ reabsorption

11
New cards

antidiuretic hormone (ADH)

increases water reabsorption in kidneys

  • ADH binds V2 receptor on basolateral membrane

    • activates adenyl cyclase to convert ATP to cAMP

    • cAMP activates PKA

    • PKA phosphorylates aquaporin-2 vesicle, allowing aquaporin-2 to insert into apical membrane

  • aquaporin-3/4 (basolateral) → constitutively present

  • increases activity of NCC, ENaC, Na+/K+-ATPase

  • released from posterior pituitary

    • sensed by baroreceptors during volume depletion

    • sensed by osmoreceptors when plasma osmolarity increases

<p>increases water reabsorption in kidneys</p><ul><li><p>ADH binds V<sub>2</sub> receptor on basolateral membrane</p><ul><li><p>activates adenyl cyclase to convert ATP to cAMP</p></li><li><p>cAMP activates PKA</p></li><li><p>PKA phosphorylates aquaporin-2 vesicle, allowing aquaporin-2 to insert into apical membrane</p></li></ul></li><li><p>aquaporin-3/4 (basolateral) → constitutively present</p></li><li><p>increases activity of NCC, ENaC, Na<sup>+</sup>/K<sup>+</sup>-ATPase</p></li><li><p>released from posterior pituitary</p><ul><li><p>sensed by baroreceptors during volume depletion</p></li><li><p>sensed by osmoreceptors when plasma osmolarity increases</p></li></ul></li></ul><p></p>
12
New cards

ADH pathologies

  • central diabetes insipidus 

    • ADH not around and not released from pituitary gland

    • from head injury

    • causes hypo-osmotic urine and increased tubular flow rate

  • nephrogenic diabetes insipidus

    • ADH released from pituitary but kidneys do not respond to it

    • from genetics, kidney disease, lithium

    • causes hypo-osmotic urine and increased tubular flow rate

<ul><li><p>central diabetes insipidus&nbsp;</p><ul><li><p>ADH not around and not released from pituitary gland</p></li><li><p>from head injury</p></li><li><p>causes hypo-osmotic urine and increased tubular flow rate</p></li></ul></li><li><p>nephrogenic diabetes insipidus</p><ul><li><p>ADH released from pituitary but kidneys do not respond to it</p></li><li><p>from genetics, kidney disease, lithium</p></li><li><p>causes hypo-osmotic urine and increased tubular flow rate</p></li></ul></li></ul><p></p>
13
New cards

ADH and extracellular fluid

normally → as plasma osmolality goes up, ADH goes up

  • body prioritizes correcting plasma volume over plasma osmolality

    • volume contraction → ADH released more significantly to retain volume

    • volume expansion → ADH release limited to correct osmolality 

  • morphine and nicotine increase ADH release, alcohol decreases ADH release