1/22
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Continuity
1. f(a) exists
2. lim x->a f(x) exists
3. lim x-> a f(x) = f(a)
L'Hopital's Rule
if limx->a f(x)/g(x) = 0/0, then lim x->a f'(x)/g'(x)
IVT
continuous
Derivative Definition
lim h->0 f(x+h)-f(x)/h
d/dx(c)
0
d/dx(cf(x))
cf'(x)
d/dx(x)
1
d/dx(sin(x))
cos(x)
d/dx(cos(x))
-sin(x)
d/dx(tan(x))
sec^2(x)
d/dx(sec(x))
sec(x)tan(x)
d/dx(csc(x))
-csc(x)cot(x)
d/dx(cot(x))
-csc^2(x)
d/dx(sin^-1(x))
1/(sqrt(1-x^2))
d/dx(a^x)
a^xln(a)
d/dxln(x)
1/x x>0
d/dxln|x|
1/x x/=0
d/dxloga(x)
1/(xln(a)) x>0
MVT
1. continuous closed
2. differentiable open
f'(c)=(f(b)-f(a))/(b-a)
inflection points
x = c is an inflection point of f(x) if the concavity changes at x=c
critical points
x =c is a critical point of f(x) provided either f'(c) = 0 or doesn't exist
EVT
1. continuous
2. a <= c, d =
definite integral
int a b f(x)fx = lim n->infinity n/sum/i=1 f(x^*subi) delta x