3. Finite Volume Methods

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/7

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

8 Terms

1
New cards
<p>Describe how Finite-Volume Method is used to discretise a generic 3D polyhedral cell</p>

Describe how Finite-Volume Method is used to discretise a generic 3D polyhedral cell

  • flow variables (p, T, u) vary linearly across the cell

  • flow variables are calculated at the cell centroid C_c, C_d

  • cell has a volume V_c

  • The location where the vector \overline{C_{C}D_{C}} intersects face S is the face center 𝑓.

\int_{V}\left\lbrack\nabla\cdot\left(u\cdot u\right)+\frac{1}{\rho}\nabla p-\nabla\cdot\left(v\cdot\nabla u\right)-g\right\rbrack dV=0

\int_{V}\left\lbrack\nabla\cdot\left(u\cdot u\right)\right\rbrack dV=\int_{V}\left\lbrack-\frac{1}{\rho}\nabla p\right\rbrack dV+\int_{V}\left\lbrack\nabla\cdot\left(v\nabla u\right)\right\rbrack dV+\int_{V}\left\lbrack g\right\rbrack dV

→ We need them in the following matrix form for the SIMPLE algorithm:

\overline{M}u=b

where

\overline{M} is a matrix of coefficients

<ul><li><p>flow variables (p, T, <strong>u</strong>) vary linearly across the cell</p></li><li><p>flow variables are calculated at the cell centroid C_c, C_d</p></li><li><p>cell has a volume V_c</p></li><li><p>The location where the vector $$\overline{C_{C}D_{C}}$$ intersects face S is the face center 𝑓.</p></li></ul><p></p><p>$$\int_{V}\left\lbrack\nabla\cdot\left(u\cdot u\right)+\frac{1}{\rho}\nabla p-\nabla\cdot\left(v\cdot\nabla u\right)-g\right\rbrack dV=0$$ </p><p>$$\int_{V}\left\lbrack\nabla\cdot\left(u\cdot u\right)\right\rbrack dV=\int_{V}\left\lbrack-\frac{1}{\rho}\nabla p\right\rbrack dV+\int_{V}\left\lbrack\nabla\cdot\left(v\nabla u\right)\right\rbrack dV+\int_{V}\left\lbrack g\right\rbrack dV$$ </p><p>→ We need them in the following matrix form for the SIMPLE algorithm:</p><p>$$\overline{M}u=b$$ </p><p>where </p><p>$$\overline{M}$$ is a matrix of coefficients</p>
2
New cards

What is a typical constant source term ?

→ gravity

\int_{V}\left\lbrack g\right\rbrack dV=gV_{c}

Considering the matrix form, we append the gravity force to the right-hand side (b vector)

\overline{M}u=b

3
New cards

How is a linear source expressed in the Navier-Stokes Equations?

\int_{V}\left\lbrack Su\right\rbrack dV=S_{C}u_{C}V_{C}

2 options:

1) We add -S_{C}V_{C} to the \overline{M} matric (implicit treatment)

2) We add S_{C}u_{C}V_{C} to the b vector (explicit treatment)

\overline{M}u=b

4
New cards

How do we solve the Convection Term of the Navier Stokes Equation across the cell (C)

  • We use the divergence theorem to convert the volume integrals to surface integrals

  • The dot product of the velocity, the unit normal vector and the surface element results in the volume flow rate out of the surface

  • The other velocity outside the bracket u is the unknown we are solving for

  • The velocity is transported by the volume flux

  • We can approximate the value at the face centre (f)

\sum_{f=1}^{_{}N}\int_{S}u\left(u\cdot n\right)dS_{f}=\sum_{f=1}^{_{N}}u_{f}\left(u_{f}\cdot n_{f}\right)S_{f}

<ul><li><p>We use the divergence theorem to convert the volume integrals to surface integrals</p></li><li><p>The dot product of the velocity, the unit normal vector and the surface element results in the volume flow rate out of the surface</p></li><li><p>The other velocity outside the bracket <strong>u </strong>is the <strong>unknown </strong>we are solving for</p></li><li><p>The velocity is transported by the volume flux</p></li><li><p>We can approximate the value at the face centre (f)</p></li></ul><p></p><p>$$\sum_{f=1}^{_{}N}\int_{S}u\left(u\cdot n\right)dS_{f}=\sum_{f=1}^{_{N}}u_{f}\left(u_{f}\cdot n_{f}\right)S_{f}$$ </p>
5
New cards

How do we solve the Diffusion Term of the Navier Stokes Equation across the cell (C)

\int_{V}\left\lbrack\nabla\cdot\left(v\cdot\nabla u\right)\right\rbrack dV=\int_{S}\left\lbrack v\left(\nabla u\right)\cdot n\right\rbrack dS=\sum_{f=1}^{N}v_{f}\left(\nabla u\right)_{f}\cdot n_{f}\cdot S_{f}

  • velocity gradient \left(\nabla u\right)_{f}

  • kinematic viscosity v_{f}

6
New cards

What is face non-orthogonality

<p></p>
7
New cards
<p>What do the <strong>orthogonal &amp; non-orthogonal components</strong> of unit normal vector ?</p>

What do the orthogonal & non-orthogonal components of unit normal vector ?

Orthogonal Component → implicit → Term increases stability

Non-orthogonal components → explicit → Term decreases stability

The higher the non-orthogonality of the mesh:

  • The larger the explicit term

  • The smaller the implicit term

8
New cards

How do we solve the Navier-Stokes Equations numerically?

SIMPLE algorithm

\overline{M}u=b

Steps:

  1. Solve the momentum equation for the velocity field. This velocity field does not satisfy the continuity equation

\overline{𝑀}𝒖=-𝛻p , Separate M into diagonal 𝑨 and off-diagonal 𝑯 components: 𝑀 𝒖 = 𝑨 𝒖− H

  1. Solve the Poisson equation for the pressure field

𝛻\cdot\left(\overline{A}^{-1}𝛻p\right)=𝛻\cdot\left(\overline{A}\overline{^{-1}H}\right)

  1. Use the pressure field to correct the velocity field so that it satisfies the continuity equation

u=\overline{A}\overline{^{-1}H}-\overline{A}^{-1}𝛻p

  1. The velocity field now does not satisfy the momentum equations. Then repeat the cycle