Results for "hypotonic"

Filters

Flashcards

Know the relationship between molecular weight and rate of diffusion The rate of diffusion is inversely proportional to the molecular weight Small weight-fast diffusion; heavy weight-slow diffusion Identify RBC’s in various solution and determine tonicity Tonicity - the ability of an extracellular solution to make water move into or out of a cell by osmosis If a cell is placed in a hypertonic solution, there will be a net flow of water out of the cell, and the cell will lose volume (shrink). A solution will be hypertonic to a cell if its solute concentration is higher than that inside the cell, and the solutes cannot cross the membrane. If a cell is placed in a hypotonic solution, there will be a net flow of water into the cell, the cell will gain volume (bigger). If the solute concentration outside the cell is lower than inside the cell, then solutes cannot cross the membrane, then the solution is hypotonic to the cell. If a cell is placed in an isotonic solution, there will be no set flow of water into or out of the cell, and the cell’s volume will remain stable. If the solute concentration outside the cell is the same as inside the cell, and the solutes cannot cross the membrane, the solution is isotonic to the cell. Homeostatic feedback loop for respiratory rate, heart rate and temperature Respiratory Rate: Stimulus : The level of carbon dioxide (CO2) in the blood increases (often due to exercise or hypoventilation) . Receptors: Chemoreceptors in the medulla oblongata, carotid arteries, and aortic arch detect changes in blood pH and CO2 levels Control Center: The medulla oblongata processes this information Effectors: Respiratory muscles (diaphragm and intercostal) adjust breathing rate and depth Response: Increased respiratory rate removes CO2 and increases O2 intake, restoring normal pH and gas levels. Heart Rate: Stimulus : Changes in blood pressure, O2, CO2, or pH levels Receptors: Baroreceptors (detect blood pressure changes) in the carotid sinus and aortic arch; chemoreceptors monitor blood chemistry Control Center: The medulla oblongata (cardiac center) processes signals Effectors : The autonomic nervous system (ANS) adjusts heart rate through the sympathetic nervous system (increases heart rate) or parasympathetic nervous system (decreases heart rate) Response : Heart rate increases during low O2 or low blood pressure (to circulate oxygen) and decreases when homeostasis is restored. Temperature Regulation Stimulus: Changes in body temperature (hyperthermia or hypothermia) Receptors: Thermoreceptors in the skin and hypothalamus detect temperature fluctuations. Control Center: The hypothalamus processes this information and signals effectors Effectors and Responses: If too hot: Blood vessels dilate (vasodilation) to release heat, and sweat glands produce sweat for cooling If too cold: Blood vessels constrict (vasoconstriction) to retain heat, and shivering generates warmth. Steps of a generic homeostatic feedback loop Stimulus : A change in the internal or external environment that disrupts homeostasis (eg. temperature change, pH levels, blood sugar levels) Sensor (Receptor) : Specialized cells or receptors detect the change and send information to the control center. Control Center (Integrator): Often the brain or endocrine glands, this component processes the information from the sensors and determines the appropriate response to restore balance. Effector: This component carries out the response to the stimulus as dictated by the control center. Effectors can be muscles or glands that help to counteract the change. Response: The action taken by the effectors to restore homeostasis. This could involve increasing or decreasing a physiological process (e.g. sweating to cool down or shivering to warm up) Feedback: The results of the response are monitored. If homeostasis is restored, the system maintains its state; if not, the loop may repeat, continuing to adjust until balance is achieved. How to evaluate data to determine the set point, error, and disturbance Identify the set point The set point is the optimal level or range that the system aims to maintain. To determine the set point: Gather baseline data: Collect data over a period to understand the normal range for the variable in question (e.g. body temp., BP, blood glucose levels) Analyze Trends: Look for patterns in the data to identify the average or median value that represents the stable condition of the system. Consult Literature: Reference established physiological norms or previous studies to confirm the typical set point for the variable. Assess Disturbance A disturbance is any factor or event that causes a deviation from the set point. To evaluate disturbances: Identify External and Internal Factors: Analyze the data for any external influences (e.g. environmental changes, dietary habits) or internal changes (e.g. illness, stress) that might have impacted the variable. Quantity Disturbance: Measure the magnitude and duration of the disturbance. This can be done by comparing the data points during the disturbance against the established set point. Monitor Changes: Track how the system responds to disturbances over time to assess their impact on maintaining homeostasis. WBC types and normal distribution values/ abnormal values and what those values indicate (infections/diseases) (Never Let Monkeys Eat Bananas) Neutrophils (50-70%) - First responders to infections, especially bacterial. High levels indicate bacterial infections, inflammation, or stress. Low levels can indicate bone marrow disorders or severe infections. Lymphocytes (20-40%) - Include B cells and T cells, important for immunity. High levels can suggest viral infections or leukemia, while low levels might indicate immune deficiency. Monocytes (2-8%) - Help with cleaning up dead cells and fighting infections. High levels can be linked to chronic infections or autoimmune diseases. Eosinophils (1-4%) - Involved in allergic reactions and fighting parasites. Elevated levels may indicate allergies or parasitic infections. Basophils (0.5-1%) - Release histamine during allergic reactions. High levels might be see in allergic conditions or blood disorders. Normal WBC Count Total WBC Count: 4000-11000 cells per microliter of blood (varies slightly by lab) Leukocytosis (High WBC): Can indicate infection, inflammation, stress, or leukemia Leukopenia (Low WBC): Can result from bone marrow disorders, viral infections, or autoimmune diseases Neutrophils: Banded vs Segmented Neutrophils are the most abundant type of white blood cells and play a crucial role in fighting infections. They exist in different stages of maturation: Banded Neutrophils (“Bands”) - Immature Neutrophils Appearance: Have a curved, unsegmented nucleus (band-shaped) Normal Range: 0-6% of total WBC count (~0-700/uL) Clinical Significance: Increased Bands (Bandemia) -> Indicates an acute bacterial infection or severe stress (e.g. sepsis). The bone marrow releases immature neutrophils in response to infection. Low Bands -> Not clinically significant unless the total WBC count is low, which could suggest bone marrow suppression. Segmented Neutrophils (“Segs”) - Mature Neutrophils Appearance: Have a segmented nucleus with 2-5 lobes Normal Range: 50-70% of total WBC count (~2500-7000/uL) Clinical Significance: High Segs (Neutrophilia) -> Suggests bacterial infections, stress, chronic inflammation, or leukemia Low Segs (Neutropenia) ->Can be caused by viral infections, bone marrow disorders, chemotherapy, or autoimmune diseases. Discuss the stages of cell cycle/mitosis-which stages are longest/shortest The cell cycle is a series of events that cells go through to grow and divide. It consists of two main phases: Interphase (Longest Phase) – Preparation for division Mitosis (Shortest Phase) – Actual cell division Stages of the Cell Cycle Interphase (90% of the Cell Cycle – Longest Phase) Interphase is the period of cell growth and DNA replication. It has three subphases: G1 Phase (Gap 1) The cell grows, produces proteins, and prepares for DNA replication. Longest variable phase; some cells may stay here indefinitely (e.g., neurons in G0 phase). S Phase (Synthesis) DNA replication occurs, ensuring each daughter cell gets a complete genome. Takes about 6-8 hours in human cells. G2 Phase (Gap 2) The cell prepares for mitosis by producing proteins and organelles. Shorter than G1 but still significant in length. Mitosis: Prophase, Metaphase, Anaphase, Telophase Know proportional and inversely proportional relationships Direct (Proportional) Relationship When two quantities increase or decrease together at a constant rate, they are directly proportional. Inversely Proportional When one variable increases, the other decreases proportionally. Know relationship between molecular weight and rate of diffusion The rate of diffusion of a substance is inversely proportional to the square root of its molecular weight. Lighter molecules diffuse faster Heavier molecules diffuse slower due to greater mass. Know relationship between filtration rate and pressure of fluid or weight of fluid Filtration rate is directly proportional to the pressure or weight of the fluid driving the filtration process. Higher pressure → Higher filtration rate Lower pressure → Lower filtration rate Know why men and women blood values are different The differences in blood values between men and women are due to biological, hormonal, and physiological factors
Updated 27d ago
flashcards Flashcards (8)
You place a RBC (0.9%) into a 5% sugar solution. Which statement below is false? The RBC is hypotonic to the 5% solution Which is an example of a sensor in a negative homeostatic feedback loop? Chemoreceptor in carotid body For membrane fluidity experiment, the part of the experiment that actually validated that the membrane was fluid was: The labeled antibodies of the human and mouse intermixing An example of primary active transport would be a protein requiring ATP to transport sodium ions across the plasma membrane. True If a red blood cell is put in a solution and it hemolyzes, then the solution is considered to be: Hypotonic If your body temperature goes too high you can denature enzymes in your body. True What does an integrator do in a homeostatic pathway? Measures the signal coming in to a set point and send a signal out to the body Which of the following represents stages of the cell division (mitosis) in the proper sequence? Prophase, metaphase, anaphase, telophase Which is not true for proteins? They are comprised of mostly cellulose What would be a disturbance for blood glucose homeostasis (normal blood glucose set point = 77mg/dL)? A permanent decrease in insulin production from the Islets of Langerhans Dr. Bio measures your total cholesterol and he reports back to you that your level is 300 mg/ 100 ml of plasma. You do what? Eat more oatmeal and flax to increase your HDL level. How do you make an unsaturated fatty acid? Perform a dehydration synthesis reaction on a saturated fatty acid Which is false for antioxidants? They speed up reactions in your body Which molecules do not dissolve in water? Non-polar Which molecule requires a transport protein to get through the plasma membrane (either channel or carrier protein)? Two of the answers are correct Interphase is considered to be part of normal cell division (mitosis). False What is the function of ATP? All of the answers are correct What are the three kinds of lipids? Triglycerides, phospholipids, and steroids When glycerol combines with 3 fatty acids to form a triglyceride (fat), which of the following chemical reactions has occurred? Dehydration Synthesis How can you alter a protein’s shape? More than one answer is correct If a red blood cell is put into a solution and it maintains its shape, then the solution is considered to be: Isotonic Which molecule requires some type of transport protein to get through the plasma membrane? Sodium Ion Cofactors are molecules that activate enzymes. Which is not a cofactor? Mercury The nitrogenous bases found in DNA have complementary paring. Which pair is correct? C-G Which is not true for meiosis? Results in a gamete that is 2N In the diagram below the two solutions are separated by a semi permeable membrane. In which direction will net movement of water occur? From side A to side B Which is not a component of a DNA molecule: Ribose Sugar Phospholipids are similar to fatty acids except for? Phospholipids have a phosphate group Which is not true for cells? They allow diffusion of all molecules If you combine a molecule of glucose and fructose, which statement is true? You have formed sucrose Which is true for enzymes? Activity will increase until the enzyme becomes saturated What method would you use to get glucose into a cell along/down it’s concentration gradient (from high to low)? Facilitated Diffusion Which is not considered an integrator in a negative homeostatic feedback loop? Pancreas Which phase of the cell cycle is where cytokinesis takes place? Telophase What vitamin do we produce by sitting in the sun; it aids in calcium absorption from the small intestine? Vitamin D Why is it important to think about ion dissociation in the body? All the above In what order do you use macromolecules for fuel? Carbohydrates, lipids, proteins Which is false for cholesterol? It can dissolve in water/blood You place a RBC (0.9%) into a 0.5% sugar solution. Which statement below is false? The RBC is hypertonic to the 0.5% solution Which is not a membrane protein function? Protein synthesis Ingesting (eating) excess hydrophilic vitamins, such as vitamin C, results in excess vitamin C being stored in your tissues. False Diffusion is: The movement of molecules from an area of high molecular concentration to an area of low molecular concentration across a selectively-permeable membrane The hormone responsible for glucose uptake/removal from the blood is: Insulin What method would you use to get sodium ions into a cell against sodium’s concentration gradient (from low to high concentration)? Active Transport Which phase of the cell cycle is where the cell is functioning normally or doing its job? Interphase Evidence for mitochondria once being bacteria that our cells engulfed is: It has it’s own DNA Ionic molecules (ie NA+, K+) can diffuse straight through the plasma membrane. True What is the difference between cis and trans fatty acids? Cis fatty acids have hydrogens on the same side of the carbon double bond and trans fatty acids do not Cofactors are molecules that activate enzymes. Where do we get cofactors from? Vitamins found in fruits and vegetables RNA has what nitrogenous base in place of thymine? Uracil Large polar molecules (ie glucose) can diffuse straight through the plasma membrane? False Which lipoprotein is comprised of more protein and less cholesterol so it scavenges for cholesterol in the blood? High density lipoprotein A normal human being has 46 chromosomes (23 pairs/2N/diploid) in each somatic cell (body cell). True The three main compounds digested by the digestive system are? Fats, carbohydrates, and proteins Meiosis is the process in which our sex cells go from 46 chromosomes to 23 single chromosomes. True The effector in any negative feedback loop is usually: An organ/tissue If a red blood cell is put into a solution and it crenates (shrinks), then the solution is considered to be: Hypertonic Which statement is false for glycogen? It is a disaccharide Enzymes aid in digestion by? Lowering the energy required to break food apart Nonpolar molecules (ie CO2) can diffuse straight through the plasma membrane
Updated 42d ago
flashcards Flashcards (5)
Hypotonic solution
Updated 46d ago
flashcards Flashcards (4)
Key Concepts: Cell Theory, Cell Structure & Function, Prokaryotic vs. Eukaryotic, Cell Membrane, Microscopes, Passive vs. Active Transport, Diffusion, Osmosis, Energy (Potential vs. Kinetic), Photosynthesis & Cell Respiration (Aerobic vs. Anaerobic), Fermentation (Lactic Acid & Alcoholic) 1. Describe one similarity and one difference between the two terms in each of the following pairs: a. Eukaryote, prokaryote Eukaryote: Has a membrane-bound nucleus in the cell Prokaryote: No nucleus, DNA free-floating in the cell, can have flagellum Both: have cell membranes, have DNA, have ribosomes b. Cell wall, cell membrane Cell wall: rigid, not as flexible, more selective (harder for things to pass through) Cell membrane: fluid, flexible, selectively permeable Both: enclose cell, facilitate what goes in/out of cell c. Diffusion, facilitated diffusion Diffusion: movement of particles from high to low concentration Facilitated diffusion: movement of particles through channel proteins Both: are passive transport (no energy required), particles move from HIGH to LOW 2. Describe the structure of a phospholipid bilayer. There are 2 layers of phospholipids (consisting of hydrophilic heads and hydrophobic tails) 3. Explain the following diagram using the terms: diffusion, cell membrane, low concentration, energy, high concentration. The water molecules are moving across the cell membrane to reach a state of equilibrium. The molecules move from HIGH to LOW concentration, so they move downwards across the membrane. This is an example of diffusion, or passive transport - this does not require energy because it is fueled by the difference in concentrations. 4a. What is the microscope magnification of the eye piece? scanning? low power? high power? ● Eye piece = 10x ● Scanning = 4x ● Low power = 10x ● High power = 40x b. If you were looking at an onion cell using the high power lens, what is the TOTAL MAGNIFICATION at which you are looking at the cell? High power = 40x Eye piece = 10x 40 x 10 = 400x Your total magnification would be 400x using the higher power objective lens. 5. Identify the difference between hypertonic, isotonic, and hypotonic solutions: A = isotonic B = hypotonic C = hypertonic 6. How is active transport different from diffusion and facilitated diffusion? ● Active Transport = requires energy, molecules are forced AGAINST the gradient from LOW to HIGH concentration ● Diffusion = does not require energy, molecules move from HIGH to low concentration ● Facilitated diffusion = does not require energy, molecules move from HIGH to low concentration, but it requires the help of channel proteins (typically larger molecules) 7. Explain what is happening in the following picture. This is an example of ENDOCYTOSIS (Active Transport) - there is a chemical/nutrients being taken into the cell when it’s engulfed by the cell membrane (becomes a vesicle). 8. What is the difference between potential and kinetic energy? Give an example of each. a. Poyential energy - stored energy; e.g,glucose, a ball at the topof ahill b. Kinetic energy - energy of motion e.g., a car onthe freeway 9. Write out the full chemical reaction for PHOTOSYNTHESIS. What organelle is responsible for this? Chloroplast 10. Write out the full chemical reaction for CELL RESPIRATION. What organelle is responsible for this? Mitochondria 11. If we are at 400X magnification (field diameter is 450 micrometers), and there are 10 cells that fit across the diameter of what we’re seeing, what is the estimated size of ONE cell? 450 nanometers / 10 cells = 45 nanometers per cell 12. What is the role of the stomata? What is the role of the guard cells? Stomata role isgas exchange to let oxygen and carbondioxide pass through, as needed for key processes such as photosynthesis and cellular respiration. Guard cells arepairs of cells that surround the stomata and controlgas exchange by regulatingthe openingand closure of stomata. 13. What would cause guard cells to swell and open stomata? What would cause guard cells to shrink and close stomata? → Whentheplanthas anexcess of water, theguard cells swell and create anopeningfor the exchange ofgas → Whentheplanthas a lack of water, theguard cells shrink and close the openingfor the exchange ofgas 14. In fermentation, what relationship exists between the amount of available sugar and amount of carbon dioxide produced? → As more sugar is available, there will be more fermentationthathappens, and more carbondioxideproduced → There is a direct relationshipbetweenthose two factors 15. List the # of ATP produced by each of the following: Glycolysis = 2 ATP Krebs = 2 ATP ElectronTransport = 34 ATP 16. Explain one example of lactic acid fermentation. Explain one example of alcoholic fermentation. a. Lactic acid fermentation- heating milk and combiningit withtwo live bacteria cultures, resultinginthe bacteria breakingdownthe sugars in milk and releasinglactic acid (distinct tart/sour taste) b. Alcoholic fermentation- yeast and bacteria beingadded to tea and fruit (sugar), resultinginkombucha withethanol and carbondioxide bubbles
Updated 121d ago
flashcards Flashcards (10)
Cells and Tonicity
Updated 171d ago
flashcards Flashcards (14)
0.00
studied byStudied by 0 people