Unit 9: Applications of Thermodynamics

Entropy

  • Entropy, S, is the amount of disorder or chaos in a system. More disorder, greater S value.

  • Standard entropy is S° and measured at 25 celsius

  • Standard entropy change ∆S° is measure at the end of a reaction

    • ∆S° = (sum of ∆S° products) - (sum of ∆S° reactants)

  • If a reaction goes from less moles to more moles (such as 2 moles on the reactant side to 3 moles on the product side) there is more disorder and a positive ∆S

  • If a reaction goes from a gas to liquid, liquid to solid, or gas to solid, the reaction has a negative ∆S

    • If bonds are broken and phase change becomes more disordered, the ∆S is positive

Gibbs Free Energy

  • ∆G is Gibbs Free Energy which determines if a process is thermodynamically favored or unfavored, also known as spontaneous or nonspontaneous

Free Energy Change

  • Standard free energy change, ∆G°, is calculated the same as ∆S°

    • ∆G° = (sum of ∆G° products) - (sum of ∆G° reactants)

  • For a reaction,

    • If ∆G is negative, it is TFP (thermodynamically favored process)

    • If ∆G is positive, it is not TFP

    • If ∆G is 0, it is at equilibrium

∆G, ∆H, and ∆S

  • TFP must result in decreasing enthalpy, increasing entropy, or both

    • ∆G° = ∆H° - T∆S°

      • T = temperature in Kelvin

      • ∆S° is usually given in j/mol*K and must be converted to kj/mol*K

      • Gibbs Free Energy is usually kj/mol*K

∆H

∆S

T

∆G

Favorability

-

+

LowHigh

--

Always TFP

+

-

LowHigh

++

Never TFP

+

+

Low High

+-

Not TFPTFP

-

-

Low High

-+

TFPNot TFP

Standard Free Energy Change and the Equilibrium Constant

  • Gibbs free energy can be calculated if equilibrium constant is known

    • ∆G° = -RT(ln K)

      • R = gas constant (8.31 j/mol*k)

      • T = kelvin temperature

      • K = equilibrium constant

  • If ∆G° is negative, K is greater than 1, the products are favored at equilibrium

  • If ∆G° is positive, K must be less than 1, the reactants are favored at equilibrium

Reduction Potentials

  • Every half reaction has electric potential. Potentials are given as reduction half-reactions. If the reaction is reversed, flip the sign to get the oxidation potential

Galvanic Cells

  • Galvanic cells (voltaic cell) use favored redox reactions to generate current

  • Two half-reactions take place in separate chambers and the electrons from the oxidation pass to the reduction reaction which creates the current

    • Current is defined as the flow of electrons from one place to another

  • Oxidation takes place at the anode electrode and reduction takes place at the cathode electrode

  • The salt bridge keeps electrical neutrality. Without the salt bridge the voltage would be zero. The potassium ion flows to the cathode and the chlorine flows to the anode.

  • The cell voltage is equal to the total redox reaction voltage.

Non-Standard Conditions

  • Reduction potentials are give at standard conditions, 25 celsius, 1 atm, and 1 M

  • Voltaic cells are very favored with equilibrium constant greater than 1. If the Q = K however, the voltage would drop to ero.

  • If the reaction quotient increased it would become close to the equilibrium constant and the voltage would decrease.

Electrolytic Cells

  • Electrolytic cells use outside voltage sources to power unfavored redox reactions and mainly occur in aqueous solutions.

  • The sign of total cell potential is always negative

Electroplating

  • Electrolytic cells are used for electroplating.

    • I = (q/t)

      • I = Current (amperes, A)

      • q = charge (coulombs, C)

      • t = time (second, s)

    • Moles of electrons = (coulombs/ 96,500 coulombs per mol)

Voltage and Favorability

  • Redox is favored if the potetial has a positive value. reaction potential can be calculate gibb’s free energy

    • ∆G° = -nFE°

      • n = number of moles of electrons exchanged in the reaction

      • F = Faraday’s constant. 96,500 coulombs/mol

      • E° = standard reaction potential (V)

    • If E° is positive, ∆G° is negative and is TFP

    • If E° is negative, ∆G° is positive and not TFP

robot