The periodic table gives you very basic but essential information about each element, take carbon for example:
Pictured above is the element carbon as displayed on the periodic table
Horizontal rows of the periodic table are called periods
Vertical columns are called groups
There is also two rows beneath the periodic table, the lanthanides and actinides, the rare Earth elements, or inner transition metals.
The identity of an atom is determined by the amount of protons in the nucleus, which also contains neutrons. The mass number of atom is the sum of its neutrons and protons (valued at 1 each). Electrons have significantly less mass than protons and neutrons and do not contribute to the mass.
Isotopes are atoms of an element with different numbers of neutrons, but same amount of protons. For example, carbon-12 has 6 protons and 6 neutrons, but carbon-14 has 6 protons and 8 neutrons. The molar mass listed on the periodic table is determined by the average of the mass numbers of all known isotopes of an element weighted by their percent abundance.
The mass of various isotopes of an element can be determined by a technique called mass spectrometry. Below is a mass spectrum for selenium
The most abundant isotope of selenium has a mass of 80, but there are four other naturally occurring isotopes. The five isotopes are combined to created a weighted average, which is then the average atomic mass of selenium.
Percent composition is the percent by mass of each element in a compound. To do this, you must divide the mass of each element or component in the compound by the total mass of the compound.
Example: calculate the percent composition each element in calcium nitrate Ca(NO3)2.
You can add up the percentages to check your work.
When given masses or percent mass, you need to be able to convert that to empirical and/or molecular formulas. The empirical formula is the simplest ratio of one element in a compound to another (CH2O). The molecular formula represents the actual formula for the substrate (C6H12O6).
Example: A compound is found to contain 56.5% carbon, 7.11% hydrogen, and 36.4% phosphorus. Part A: determine the empirical formula for the compound.
Part b: if the molar mass is 170.14 g/mol, what's the molecular formula?
The electrostatic force is the attraction between opposite charges and the strength can vary depending on now for the charges are from each other. To find the strength, you can use Coulomb's law
The image of shows the formula for coulomb's law, where F= electrostatic force between nucleus and electron, q1 = magnitude of the positive charge, q2 = magnitude of the negative charge, and r= distance between charges.
Essentially, Coulomb's law states the closer an electron is to the nucleus, the stronger the attraction and the less potential energy there is. in order to remove an electron from an atom, you must add enough energy to overcome the electrostatic force (the binding energy which is always a positive value).
A photoelectron spectrum (PES) is a graph of the ionization energies for all electrons when ejected from the nucleus.
The y-axis, relative number of electrons, is the amount of electrons ejected from a specific energy level.The x-axis shows the binding energy of those electrons which decreases left to right.
Each section of the peaks represents a different energy level and each gap signifies a change in energy level. Because there are multiple peaks in each section, this shows subshells that have different distances. A subshell is the shape of the space an electron can be found in.
The first subshell is the s-subshell that can hold 2 electrons. Second is the p-subshell that can hold six electrons, as shown in the graph by being three times as tall. The height can help determine the amount of electrons in a shell.
In the area for the 3rd energy level, the p-subshell isn't as tall as the other, indicating a partially filled energy level.
The periodic table is divided into four subshells, with the size of the atom determining how many subshells it has. Subshells are known as s, p, d (10 max electrons), and f (14 electrons).
Each subshell is as long as there are electrons in it (s block can have 2 electrons and is two elements long). This method of organization is called electron configuration and can also be used to describe elements.
According to Hund's Rule, when electrons are filling the orbitals of the subshell, they will only have two in one orbital when it is not possible to have each electron in its own orbital.
Notice in the above picture howthe arrows are pointing in different directions, signifying different spin, and the arrows will only pair up when there's no other free orbitals (nitrogen and oxygen).
The most stable configuration of an element involves having a completely full outer shell. For any element in the s or p block, that means gaining a total of eight electrons in the outer shell (2 in the s, 6 in the p), known as valence electrons.
When an element gains or loses electrons to become stable they are called ions. when an element is close to a full shell, such as the halogens, they will gain electrons and be negatively charged, these are referred to as anions.
When elements such as the Alkali Metals want to reach stable configuration, they will lose electrons because it takes less electrons than trying to gain. These are called cations when they are positively charged.
Alkali metals have an ionization charge of +1, and alkaline earth metals have an ionization charge of +2, and so on.
Transition metals are cations, but can have multiple different charges which depends on which compound they are in.
Only zinc (+2) and silver (+1) are the only transition metals with one charge possibility.
There are three basic rules to understanding trends in the periodic table that help define element behaviors:
Elements are defined into three categories: metals, metalloid, and nonmetals.