1/26
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
d/dx (sin x) =
cos x d/dx
d/dx (cos x) =
-sin x d/dx
d/dx (tan x) =
sec^2 x d/dx
d/dx (csc x) =
-csc x cot x d/dx
d/dx (sec x) =
sec x tan x d/dx
d/dx (cot x) =
-csc^2 x d/dx
f'(x) in limit form
lim h->0 ( f(x+h) - f (x) ) / h
f'(x) at a point
lim x->a ( f(x) - f(a) ) / x-a
Constant function
d/dx (c) = 0
Power rules
d/dx(x^n) = nx^(n-1)
Constant Multiple Rule
d/dx (cu) = c du/dx
Sum Rule & Difference Rules
(u +- v)' = u' +- v'
Product Rule
d/dx (uv) = uv' + vu'
Quotient Rule
d/dx (u/v) = (vu' - uv')/v²
Chain Rule
d/dx f(g(x)) = f'(g(x)) g'(x)
Power Chain Rule
d/dx (u^n) = nu^(n-1) du/dx
d/dx (sin^-1 x) =
1/√(1-x^2) d/dx
d/dx (cos^-1 x) =
-d/dx sin^-1 x
d/dx (tan^-1 x) =
1/(1+x^2) d/dx
d/dx (csc^-1 x) =
-d/dx sec^-1 x
d/dx (sec^-1 x) =
1/|x|√x^2-1 d/dx
d/dx (cot^-1 x) =
-d/dx tan^-1 x
lim x->0 (sin ax)/ax =
1
lim x->∞ (sin x)/x =
0
lim x->0 1/(sin x) =
DNE
lim x->0 (cos x - 1)/x =
0
lim x->∞ (1 + 1/n)^n =
e