KBKF15 - WEEK 5 - KREB CYCLE & ELECTRON TRANSPORT CHAIN

0.0(0)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/27

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

28 Terms

1
New cards

Very pretty picture of glycolysis / glycogeneous from the lecture that i don’t really understand?

knowt flashcard image
2
New cards

Pyruvate carboxylase - ( pyruvate → oxaloacetate) in gluconeogenesis

The process requires CO2, which is a gas molecule.

  • uses Biotin to hook the CO2 (g) to the pyruvate by a swinging motion. This requires ATP and activation of CO2.

  1. Activation of CO2, using ATP and HCO3-.

  2. attachment of CO2 to biotin.

  3. Carboxylation of pyruvate to oxalacetate.

<p>The process requires CO<sub>2</sub>, which is a gas molecule. </p><ul><li><p>uses <span style="color: blue"><strong>Biotin</strong></span><strong> </strong>to hook the CO<sub>2</sub> (g) to the pyruvate by a swinging motion. This requires ATP and activation of CO<sub>2</sub>.</p></li></ul><p></p><ol><li><p>Activation of CO<sub>2</sub>, using ATP and HCO<sub>3</sub><sup>-</sup>. </p></li><li><p>attachment of  CO<sub>2</sub> to biotin. </p></li><li><p>Carboxylation of pyruvate to oxalacetate.</p></li></ol><p></p>
3
New cards

Hur många ATP krävs för att göra en F(1,6)BP (krävs inget därifrån till glucose)

Det krävs 2 pyruvat för 1 glucose. Och det krävs

  • 4ATP + 2GTP för syntes av 1 glucose

<p>Det krävs 2 pyruvat för 1 glucose. Och det krävs </p><ul><li><p><span style="color: red">4ATP + 2GTP för syntes av 1 glucose</span></p></li></ul><p></p>
4
New cards

Control of gluconeogenesis / glycolysis

Proteinet är bi-funktionellt, och endast en del av proteinet är igång

<p>Proteinet är bi-funktionellt, och endast en del av proteinet är igång </p><ul><li><p></p></li></ul><p></p>
5
New cards

Intereactions between different cell metabolism (olika vävnader)

knowt flashcard image
6
New cards

Where does the KREB cycle and electron transport chain take place

KREB cycle

  • Happens in the matrix of mitochondria.

Electron transport chain

  • On the inner mitochondrial membrane.

<p><strong>KREB cycle </strong></p><ul><li><p>Happens in the matrix of mitochondria. </p></li></ul><p></p><p><strong>Electron transport chain </strong></p><ul><li><p>On the inner mitochondrial membrane. </p></li></ul><p></p>
7
New cards

Pyruvate to Acetyl-CoA, hoe does the enzymes look like? PDH

Multi-enzyme complexes - Several enzymes are non-covalently (or covalently) linked together to form a functional unit.

  • The pyruvate dehydrogenase complex is formed by 3 enzymes (E1, E2, E3) through non-covalent interactions.

  • Converts Pyruvate to Acetyl-CoA with NAD+ → CO2 + NADH + H+.

8
New cards

KREB cycle - How much energy do we get out?
From Pyruvate, Lactate and PEP?

1 Pyruvate

Missed the whole glycolysis and is already in the mitochondria

  • Pyruvate → Acetyl-CoA (PDH) = 1 NADH = 2,5 ATP

  • 3 x NADH (2e-) 2,5 ATP

  • 1 x FADH2 (2e-) 1,5 ATP

  • GTP → (2e-) 1 ATP

    Totalt = 12.5 ATP / pyruvate.

1 Lactate

The NADH formed from lactate (lactate → pyruvate + NADH) in cytoplasm needs to be transported into mitochondria, it needs to converted into FADH2 to enter mitochondria. So basically we will get 1 extra FADH2.

  • Pyruvate → Acetyl-CoA (PDH) = 1 NADH = 2,5 ATP

  • 3 x NADH (2e-) 2,5 ATP

  • 1 x FADH2 (2e-) 1,5 ATP + 1 x FADH2 (2e-) 1,5 ATP (from lactate)

  • GTP → (2e-) 1 ATP

    Totalt = 14 ATP / Lactate.

1 PEP

  • PEP → Pyruvate + 1 ATP (no cost for transporting ATP into mito)

  • Pyruvate → Acetyl-CoA (PDH) = 1 NADH = 2,5 ATP

  • 3 x NADH (2e-) 2,5 ATP

  • 1 x FADH2 (2e-) 1,5 ATP

  • GTP → (2e-) 1 ATP
    Totalt = 14 ATP / PEP.

<p><strong>1 Pyruvate</strong></p><p>Missed the whole glycolysis and is already in the mitochondria</p><ul><li><p>Pyruvate → Acetyl-CoA (PDH) = 1 NADH = 2,5 ATP</p></li></ul><ul><li><p>3 x NADH (2e<sup>-</sup>) 2,5 ATP</p></li><li><p>1 x FADH<sub>2 </sub>(2e<sup>-</sup>) 1,5 ATP</p></li><li><p>GTP → (2e<sup>-</sup>) 1 ATP</p><p><span style="color: red">Totalt = 12.5 ATP / pyruvate.</span></p></li></ul><p></p><p><strong>1 Lactate</strong></p><p>The NADH formed from lactate (lactate → pyruvate + NADH) in cytoplasm needs to be transported into mitochondria, it needs to converted into FADH<sub>2</sub> to enter mitochondria. So basically we will get 1 extra FADH<sub>2</sub>.</p><ul><li><p>Pyruvate → Acetyl-CoA (PDH) = 1 NADH = 2,5 ATP</p></li></ul><ul><li><p>3 x NADH (2e<sup>-</sup>) 2,5 ATP</p></li><li><p>1 x FADH<sub>2 </sub>(2e<sup>-</sup>) 1,5 ATP + 1 x FADH<sub>2 </sub>(2e<sup>-</sup>) 1,5 ATP (from lactate)</p></li><li><p>GTP → (2e<sup>-</sup>) 1 ATP</p><p><span style="color: red">Totalt = 14 ATP / Lactate.</span></p></li></ul><p></p><p><strong>1 PEP</strong></p><ul><li><p>PEP → Pyruvate + 1 ATP (no cost for transporting ATP into mito)</p></li><li><p>Pyruvate → Acetyl-CoA (PDH) = 1 NADH = 2,5 ATP</p></li></ul><ul><li><p>3 x NADH (2e<sup>-</sup>) 2,5 ATP</p></li></ul><ul><li><p>1 x FADH<sub>2 </sub>(2e<sup>-</sup>) 1,5 ATP</p></li></ul><ul><li><p>GTP → (2e<sup>-</sup>) 1 ATP <br><span style="color: red">Totalt = 14 ATP / PEP.</span></p><p></p></li></ul><p></p><p></p>
9
New cards

Regulation of KREB cycle - Main focus on PDH

The activity is decreased when a lot of energy is present (ATP, NADH, Acetyl-CoA), these molecules will inhibit the PDH molecule. When ADP is present, the activity is increased.

  • Other processes are also inhibited by ATP and NADH, and activated by ADP (not as important)

<p>The activity is decreased when a lot of energy is present (ATP, NADH, Acetyl-CoA), these molecules will inhibit the PDH molecule. When ADP is present, the activity is increased. </p><ul><li><p>Other processes are also inhibited by ATP and NADH, and activated by ADP (not as important) </p></li></ul><p></p>
10
New cards

Glyoxylate cycle (osäker om man ska kunan detta)

  • Främst i växter och sprutar ej ut CO2,

  • Live on 2C compounds, variant of KREB, 2 decarboxylation steps are skipped.

<ul><li><p>Främst i växter och sprutar ej ut CO<sub>2</sub>, </p></li><li><p>Live on 2C compounds, variant of KREB, 2 decarboxylation steps are skipped. </p></li></ul><p></p>
11
New cards

Very general (BUT CUTE) picture of glycolysis + KREB + e- transport chain

change to better picture when drawing done.

knowt flashcard image
12
New cards

oxidative phosphorylation : different parts

  1. Electron transport from reduced electrons carriers (from KRBE?) to oxygen.

  2. Creation of membrane potential and porton gradient to provide driving force for ATP synthesis.

  3. ATP synthesis

The reactions through the inner mitochondrial membrane.

13
New cards
<p>A general picture of the e<sup>-</sup> transport chain </p>

A general picture of the e- transport chain

Consists of 4 protein complexes, Q-complex, Cytosome C and ATP syntase :3

<p>Consists of 4 protein complexes, Q-complex, Cytosome C and ATP syntase :3 </p>
14
New cards

Electron transport chain - more detailed pathway for each e- carrier

The e- are constantly trasnported, and provides energy at all times.

NADH

  1. Complex 1 (integral membrane protein → pumps H+ , each NADH = 2e-)

  2. CoQ (transports e- from complex 1 to 3)

  3. Complex 3 (integral membrane protein —> pumps H+)

  4. Cytochrome C (Transports e- between complex 3 and 4)

  5. Complex 4 (integral membrane protein, pumps H+ and transfers e- to O2 turning it to water.

Each NADH can pump 10 H+.

FADH2

  1. Delivered to CoQ via complex 2, which then follows the same pathway as NADH (?).

Each FADH2 can pump 6 H+.

<p>The e<sup>-</sup> are constantly trasnported, and provides energy at all times. </p><p></p><p><strong>NADH</strong> </p><ol><li><p><span style="color: blue"><u>Complex 1 </u></span>(integral membrane protein → pumps H<sup>+</sup> , each NADH = 2e<sup>-</sup>) </p></li><li><p><span style="color: blue"><u>CoQ</u></span> (transports e<sup>-</sup> from complex 1 to 3) </p></li><li><p><span style="color: blue"><u>Complex 3</u> </span>(integral membrane protein —&gt; pumps H<sup>+</sup>)</p></li><li><p><span style="color: blue"><u>Cytochrome C</u></span><u> </u>(Transports e<sup>-</sup> between complex 3 and 4) </p></li><li><p><span style="color: blue"><u>Complex 4</u></span> (integral membrane protein, pumps H<sup>+ </sup>and transfers e<sup>-</sup> to O<sub>2</sub> turning it to water. </p></li></ol><p><span style="color: red">Each NADH can pump 10 H<sup>+</sup>. </span></p><p></p><p>FADH<sub>2</sub></p><ol><li><p>Delivered to CoQ via complex 2, which then follows the same pathway as NADH (?). </p></li></ol><p><span style="color: red">Each FADH<sub>2</sub> can pump 6 H<sup>+</sup>. </span></p><p></p>
15
New cards

Q-cycle tror ej han skulle ställa någon frågor om detta tbh

knowt flashcard image
16
New cards

Reactive intermediates in the electron transport chain

If the e- from cytochrome C gets to the wrong places → reactive radicals. These includes ROS e.g O2-, O*H-, H2O2.

  • We have protective systems that combats these.

  • Superoxide dismutase: 2O2-* + 2 H+ → ← O2 + H2O2. By working out, we produces more NADH+ and NAD+ which increases the chans of producing radiclals, thus increased amount of the dismutase in our systeme.

  • Catalase: H2O2 → ← O2 + H2O. The amount decreases with age. Therefore, it is important to consume antooxidants.

<p>If the e<sup>-</sup> from cytochrome C gets to the wrong places → reactive radicals. These includes <span style="color: blue"><strong>ROS</strong></span> e.g  O<sub>2</sub><sup>-</sup>, O<sup>*</sup>H<sup>-</sup>, H<sub>2</sub>O<sub>2</sub>. </p><ul><li><p>We have protective systems that combats these. </p></li></ul><p></p><ul><li><p><span style="color: blue"><strong>Superoxide dismutase</strong></span>: 2O<sub>2</sub><sup>-* </sup>+ 2 H<sup>+</sup> → ← O<sub>2</sub> + H<sub>2</sub>O<sub>2</sub>. By working out, we produces more NADH<sup>+</sup> and NAD<sup>+</sup> which increases the chans of producing radiclals, thus increased amount of the dismutase in our systeme. </p></li><li><p><span style="color: blue"><strong>Catalase</strong></span>:  H<sub>2</sub>O<sub>2</sub> → ← O<sub>2 </sub>+ H<sub>2</sub>O. The amount decreases with age. Therefore, it is important to consume antooxidants. </p></li></ul><p></p>
17
New cards

What is Chemiosmotic hypothesis?

potential / pH difference created through pumping out H+ from the mitochondria matrix to the intermembrane space when e- is moved through the respiratory chain.

<p>potential / pH difference created through pumping out H<sup>+</sup> from the mitochondria matrix to the intermembrane space when e<sup>-</sup> is moved through the respiratory chain. </p>
18
New cards

ATP-synthase

formed by different subunits.

  • β-subunits goes through configuration change LTO
    L : loose, binds to ADP and Pi
    T : Tight, forms ATP
    O : Open : release ATP

  • The mechanism is carried out through rotation that carries H+ through the ATP synthase. The H+ gets pumped out into the intermembrane space.

<p>formed by different subunits. </p><ul><li><p><u>β-subunits </u>goes through configuration change <span style="color: blue"><strong>LTO</strong></span><br>L : loose, binds to ADP and P<sub><sup>i</sup></sub><br>T : Tight, forms ATP <br>O : Open : release ATP<br></p></li><li><p>The mechanism is carried out through rotation that carries H<sup>+</sup> through the ATP synthase. The H<sup>+</sup> gets pumped out into the intermembrane space. </p></li></ul><p></p>
19
New cards

How many ATP is created from 1 glucose

Through the whole process, ATP is formed and utilized. So the net amount is 30 ATP.

<p>Through the whole process, ATP is formed and utilized. So the net amount is 30 ATP. </p>
20
New cards

Uncoupler proteins - between electron trasnport, proton displacement and phosphorylation of ADP

Usually, these proteins are coupled, but thanks to uncouplers, e- transport and proton displacement can be decoupled from ATP synthesis.

  • The H+ gradient is degenerated through H+ getting back in the matrix

  • Instead of ATP heat is produced instead.

<p>Usually, these proteins are coupled, but thanks to uncouplers, e<sup>-</sup> transport and proton displacement can be decoupled from ATP synthesis. </p><ul><li><p>The H<sup>+</sup> gradient is degenerated through H<sup>+</sup> getting back  in the matrix </p></li><li><p>Instead of ATP heat is produced instead. </p></li></ul><p></p>
21
New cards

Pentosfosfatvägen (kolhydrat med 5C) Stor fokus i tentan

Processen har 2 syften

  1. Bilda ribose-5-phosphate

  2. Bilda NADPH e.g FA for biosynthesis.

Delas upp i 2 delar

  1. Oxidativa delen (med Co-enzymes involved)
    [ Glucose-6-phosphate + 2 NADP+ → Robulose-5-Phosphate + CO2 + 2 NADPH + Pi ].

  2. Icke-Oxidativa delen (omvandla antalket kolatomer i kolhydrarerna)
    Transaldolas (TA) : Flyttar 3C fragment 1. (C7 + C3 → C4 + C6)
    Transketolas (TK) : Flyttar 2C fragment 2. (C5 + C5 → C3 + C7) 3. (C4 + C5 → C6 + C3)

    Gör man en blandning av reaktion 1,2,3 får man 3C5 (ribos-5-fosfat) → ← 2 C6 (fruktos-6-fosfat) + C3 (glyceraldehyd-3-fosfat)

<p>Processen har 2 syften</p><ol><li><p>Bilda ribose-5-phosphate</p></li><li><p>Bilda NADPH e.g FA for biosynthesis.</p></li></ol><p></p><p>Delas upp i <u>2 delar</u></p><ol><li><p><span style="color: blue"><strong>Oxidativa delen</strong></span> (med Co-enzymes involved)<br>[ <strong>Glucose-6-phosphate + 2 NADP+ → Robulose-5-Phosphate + CO<sub>2</sub> + 2 NADPH + P<sub>i </sub></strong>]. <br></p></li><li><p><span style="color: blue"><strong>Icke-Oxidativa delen</strong></span> (omvandla antalket kolatomer i kolhydrarerna) <br><span style="color: blue"><strong>Transaldolas</strong></span> (TA) : Flyttar 3C fragment 1. (C7 + C3 → C4 + C6) <br><span style="color: blue"><strong>Transketolas</strong></span> (TK) : Flyttar 2C fragment 2. (C5 + C5 → C3 + C7) 3. (C4 + C5 → C6 + C3) <br><br>Gör man en blandning av reaktion 1,2,3 får man 3C5 (ribos-5-fosfat) → ← 2 C6 (fruktos-6-fosfat) + C3 (glyceraldehyd-3-fosfat)<br></p></li></ol><p></p>
22
New cards

Pentosfosfatvägen - The oxidative pathway

Denna delen består av 3 reaktioner

  1. Glucose 6-phodphate dehydrogense kommer att omvandla G6P till en Lakton (cyckliskt carboxyl ester) och NADPH + H+.

  2. Laktanas hydrolyserar laktonen till en syra (glukonat).

  3. 6-fosfoglukonatdehydrogenas dekarboxylerar glukonaten till NADPH och Ribulose-5-phosphate.

<p>Denna delen består av 3 reaktioner </p><ol><li><p>Glucose 6-phodphate <strong>dehydrogense</strong> kommer att omvandla G6P till en <span style="color: blue"><strong>Lakton </strong></span>(cyckliskt carboxyl ester) och <span style="color: blue">NADPH + H<sup>+</sup>. </span></p></li><li><p><strong>Laktanas</strong> <strong>hydrolyserar</strong> laktonen till en <span style="color: blue">syra (glukonat). </span></p></li><li><p>6-fosfoglukonatdehydrogenas dekarboxylerar glukonaten till <span style="color: blue">NADPH och Ribulose-5-phosphate. </span></p></li></ol><p></p>
23
New cards

Vad händer med ribulose-5-phosphate?

Ribulose-5-phosphate is a ketos. The molecule can then turn into 2 different molecules.

  1. ribose-5-phosphate (aldos) that is a isomer. → Used in nucleotides

  2. xylulose-5-phosphate through epimerisation. → Used in the non-oxidative part of the pentosphosphate pathway.

<p>Ribulose-5-phosphate is a ketos. The molecule can then turn into 2 different molecules. </p><ol><li><p>ribose-5-phosphate (aldos) that is a isomer. → Used in nucleotides </p></li><li><p>xylulose-5-phosphate through epimerisation. → Used in the non-oxidative part of the pentosphosphate pathway. </p></li></ol><p></p>
24
New cards

Pentosephosphatepathway - Non oxidative part

a lot can happen here hehe

<p>a lot can happen here hehe </p>
25
New cards

pentosfodfatvägens anpassing till cellens behov

  1. Ribose-5-phosphate > NADPH : Ribose-5-phosphate behövs mycket, e.g när celler delar sig mycket, då är det den icke.oxidativa delen som är mest aktiv (?)

  2. Ribose-5-phosphate = NADPH :Behovet av ribose-5-phosphate = behov av NADPH , då utnyttkas den oxidativa delen.
    - TA ich TK har liknande aktiva säten → positiv laddning i aktiva sätet. lysin eller TPP.

  3. Ribose-5-phosphate < NADPH : 3 och 4 är jag osäker på vad det är som sker. Men det är iaf när behovet av NADPH är större

<ol><li><p><span style="color: green">Ribose-5-phosphate &gt; NADPH : </span>Ribose-5-phosphate behövs mycket, e.g när celler delar sig mycket, då är det den icke.oxidativa delen som är mest aktiv (?) <br></p></li><li><p><span style="color: green">Ribose-5-phosphate = NADPH </span><span>:</span>Behovet av ribose-5-phosphate = behov av NADPH , då utnyttkas den oxidativa delen. <br>- TA ich TK har liknande aktiva säten → positiv laddning i aktiva sätet. <span style="color: blue">lysin eller TPP. </span><br></p></li><li><p><span style="color: green">Ribose-5-phosphate &lt; NADPH : </span>3 och 4 är jag osäker på vad det är som sker. Men det är iaf när behovet av NADPH är större </p></li></ol><p></p>
26
New cards

Transketolas (TK) + TPP

Sker på 2 olika sätt (?)

  1. TPP genererar anjon som attackerar ketogruppen i substratet.

  2. Aldosprodukt lämanr och aldossubstrat binder in och reaktionen reverseras.

<p>Sker på 2 olika sätt (?) </p><ol><li><p>TPP genererar anjon som attackerar ketogruppen i substratet. </p></li><li><p>Aldosprodukt lämanr och aldossubstrat binder in och reaktionen reverseras. </p></li></ol><p></p>
27
New cards

Transaldolas (TA) + Lysin

  1. Lysin bilder schiffsk bas med ketogrupp. isubstratet. Protinerad schiffsk bas stabiliserar den negatova laddningen.

  2. Aldosprodukt lämnar och aldossubstrat binder in och reaktionen reverseras.

<ol><li><p>Lysin bilder schiffsk bas med ketogrupp. isubstratet. Protinerad schiffsk bas stabiliserar den negatova laddningen. </p></li><li><p>Aldosprodukt lämnar och aldossubstrat binder in och reaktionen reverseras. </p></li></ol><p></p>
28
New cards

TPP vs Lysin

knowt flashcard image