1/18
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
commutative
order doesn’t matter
commutative e.g.
4+y=y+4, 5x=x(5)
associative
grouping of values doesn’t matter
associative e.g.
(5+x)+y=5(x+y), (3*y)*x=3*(y*x)
identity
stays the same
identity e.g.
y+0=y, y*1=y
inverse
using opposites to cancel a value
inverse e.g.
y+(-y)=0, y*(1/y)=1
property of zero
multiplying by 0 always =0
property of zero e.g.
y*0=0
distributive
multiply a value to an expression inside a parenthesis
distributive e.g.
4(w+z)=4w+4z
reflexive
a number always equals itself
reflexive e.g.
y=y, 4=4
symmetric
if a=b, then b=a
symmetric e.g.
y=4, 4=y
transitive
if a=b, and b=c, then a=c
transitive e.g.
y=4, 4=2*2, y=2*2
closure
addition, subtraction, multiplication, and division in a set always gives you a number in the same set