Tests for Sequences and Series

0.0(0)
studied byStudied by 2 people
0.0(0)
call kaiCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/39

Last updated 1:48 PM on 4/8/25
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No analytics yet

Send a link to your students to track their progress

40 Terms

1
New cards

Nth Term

an

<p>a<sub>n</sub></p>
2
New cards

What does the nth term test for?

divergence

3
New cards

Nth Term diverges conditions

lim a ≠ 0

<p>lim a <span>≠ 0</span></p>
4
New cards

Geometric Series

arn

<p>ar<sup>n</sup></p>
5
New cards

Geometric Series Convergence Conditions

l r l < 1

6
New cards

Geometric Series Divergence Conditions

l r l 1

7
New cards

What does the Geometric Series converge to?

the sum; S = a / (1-r)

<p>the sum; S = a / (1-r)</p>
8
New cards

Telescoping Series

(an - an+1)

<p>(a<sub>n</sub> - a<sub>n+1</sub>)</p>
9
New cards

Telescoping Series Convergence Conditions

lim an = L; L has to be a finite number

<p>lim a<sub>n</sub> = L; L has to be a finite number</p>
10
New cards

What does the telescoping Series converge to?

the sum; S = a1 - L

<p>the sum; S = a<sub>1 </sub>- L</p>
11
New cards

P-series test

1 / np

<p>1 / n<sup>p</sup></p>
12
New cards

P-series test convergence conditions

p > 1

13
New cards

P-series test divergence conditions

0 < p ≤ 1

14
New cards

What if p = 1 in a p-series test?

divergent harmonic series

<p>divergent harmonic series</p>
15
New cards

Alternating Series Test

(-1)n * an or (-1)n+1 * an+1

<p>(-1)<sup>n</sup> * a<sub>n</sub> or (-1)<sup>n+1</sup> * a<sub>n+1</sub></p>
16
New cards

Alternating Series Test convergent conditions

0 < an+1 ≤ an (nonincreasing) & lim an = 0

<p>0 &lt; a<sub>n+1</sub> ≤ a<sub>n</sub> (nonincreasing) &amp; lim a<sub>n</sub> = 0</p>
17
New cards

Alternating Series Test Remainder

l S - Sn l = l Rn l ≤ an+1

<p>l S - S<sub>n</sub> l = l R<sub>n</sub> l <span>≤ a<sub>n+1</sub></span></p>
18
New cards

Integral Test conditions for f(x)

positive, continuous, and decreasing

19
New cards

Integral Test

an = f(n)

<p>a<sub>n</sub> = f(n)</p>
20
New cards

Integral Test Convergence Conditions

∫ f(x) dx converges, then series converges

<p><span>∫ f(x) dx converges, then series converges</span></p>
21
New cards

Integral Test Divergence Conditions

∫ f(x) dx diverges, then series diverges

<p>∫ f(x) dx diverges, then series diverges</p>
22
New cards

Ratio Test

an

<p>a<sub>n</sub></p>
23
New cards

Ratio Test Convergence Conditions

lim l an+1 / an l < 1

<p>lim l a<sub>n+1</sub> / a<sub>n</sub> l &lt; 1</p>
24
New cards

Ratio Test Divergence Conditions

lim l an+1 / an l > 1 or =

<p>lim l a<sub>n+1</sub> / a<sub>n</sub> l &gt; 1 or = <span>∞</span></p>
25
New cards

Ratio Test is inconclusive if?

lim l an+1 / an l = 1

<p>lim l a<sub>n+1</sub> / a<sub>n</sub> l = 1</p>
26
New cards

Root Test

an

<p>a<sub>n</sub></p>
27
New cards

Root Test Convergence Conditions

lim n√l an l < 1

<p>lim n√l a<sub>n</sub> l &lt; 1</p>
28
New cards

Root Test Divergence Conditions

lim n√l an l > 1

<p>lim n√l a<sub>n</sub> l &gt; 1</p>
29
New cards

The root test is inconclusive when?

lim n√l an l = 1

<p>lim n√l a<sub>n</sub> l = 1</p>
30
New cards

Direct Comparison Test

an

<p>a<sub>n</sub></p>
31
New cards

Direct Comparison Test Convergence Conditions

0 < an ≤ bn and bn converges

<p>0 &lt; a<sub>n</sub> <span>≤ b<sub>n</sub> and b<sub>n</sub> converges</span></p>
32
New cards

Direct Comparison Test Divergence Conditions

0 < bn ≤ an and bn diverges

<p>0 &lt; b<sub>n</sub> ≤ a<sub>n</sub> and b<sub>n</sub> diverges</p>
33
New cards

Limit Comparison Test

an

<p>a<sub>n</sub></p>
34
New cards

Limit Comparison Test Convergence Conditions

lim (an / bn) = L > 0 & bn converges

<p>lim (a<sub>n </sub>/ b<sub>n</sub>) = L &gt; 0 &amp; b<sub>n </sub>converges</p>
35
New cards

Limit Comparison Test Divergence Conditions

lim (an / bn) = L > 0 & bn diverges

<p>lim (a<sub>n </sub>/ b<sub>n</sub>) = L &gt; 0 &amp; b<sub>n </sub>diverges</p>
36
New cards

L must be what in limit comparison test?

finite and positive

37
New cards

Absolute vs. Conditional Convergence

once identified as convergence, use tests to see if l an l is convergent; yes- absolute or no- conditional

<p>once identified as convergence, use tests to see if l a<sub>n</sub> l is convergent; yes- absolute or no- conditional</p>
38
New cards

Sequence

a list; ex: 2, 4, 6, 8

39
New cards

Series

ex: 2 + 4 + 6 + 8

40
New cards

Recursive Definition (Implicit Definition) vs. Explicit Definition for Sequences

recursive- an+1 = an + x; explicit- an = 3n - 2

Explore top flashcards

Acrow
Updated 432d ago
flashcards Flashcards (29)
PSY 3113 Chapter 1
Updated 848d ago
flashcards Flashcards (60)
Psychosocial Midterm
Updated 956d ago
flashcards Flashcards (123)
Author Test Sets 1-6
Updated 1034d ago
flashcards Flashcards (135)
Biology Lab Final
Updated 660d ago
flashcards Flashcards (91)
Ecology
Updated 1103d ago
flashcards Flashcards (49)
Acrow
Updated 432d ago
flashcards Flashcards (29)
PSY 3113 Chapter 1
Updated 848d ago
flashcards Flashcards (60)
Psychosocial Midterm
Updated 956d ago
flashcards Flashcards (123)
Author Test Sets 1-6
Updated 1034d ago
flashcards Flashcards (135)
Biology Lab Final
Updated 660d ago
flashcards Flashcards (91)
Ecology
Updated 1103d ago
flashcards Flashcards (49)