Unit 1 Test

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/13

flashcard set

Earn XP

Description and Tags

Calculus

Calculus

12th

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

14 Terms

1
New cards
limit formula 1 (specific point)
f’(a) = lim f(x) - f(a)/ x - a, x≠a

x→a
2
New cards
limit formula 2 (general formula)
f’(x)=lim f(x+h) - f(x)/h, h≠0

h→0
3
New cards
the derivative can be calculated at…
…continuous points
4
New cards
the derivative does not exist at…
… asymptotes, jump discontinuity, removal discontinuity, holes
5
New cards
The Power Rule of Differentiation (proof)
f(x)=x^n P1 (a, a^n) P2(x, x^n)

f’(x)=lim x^n - a^n/ x - a

x→a

=lim (x - a)\[x^n-1 + xa^n-2 + x^n-3 a^2 +… + xa^n-2 + a^n-1\] x≠a

x→a

=lim \[x^n-1 + x^n-2 a + x^n-3 a^2 + x^n-4 a^3 + … + xa^n-2 + a^n-1\] sub x=a

x→a

=\[a^n-1 +a^n-2 a + a^n-3 a^2 + a^n-4 a^3 + … + aa^n-2 + a^n-1\]

= a^n-1 + a^n-1 + a^n-1 + a^n-1 + … + a^n-1 + a^n-1

= na^n-1

= nx^n-1
6
New cards
The Power Rule
if f(x)= x^n, f’(x) = nx^n-1

if y=x^n, dy/dx = nx^n-1 if d/dx(x^n) = nx^n-1
7
New cards
The Product Rule
y=f(x) g(x) y= f’(x)g(x) + g’(x)f(x)
8
New cards
The Product Rule (proof)
f’(x)= lim f(x+h) - f(x)/h g’(x)= lim g(x+h) - g(x)

h→0. h→0

=lim f(x+h) g(x+h) - f(x+h) g(x) + f(x+h) g(x) + f(x+h) g(x) - f(x) g(x)

h→0

= lim f(x+h)\[ g(x+h) - g(x)/h\] + lim g(x)\[ f(x+h) - f(x)/h\]

h→0 h→0

=f(x)\[g’(x)\] + g(x)\[f’(x)\]

=f’(x) g(x) + g’(x) f(x)
9
New cards
The Quotient Rule
f’(x) g(x) - g’(x) f(x)/\[g(x)\]^2
10
New cards
The Quotient Rule
if y=f(x)/g(x)

g(x) y = f(x)

g’(x) y + dy/dx g(x) = f’(x)

dy/dx = f’(x) - g’(x) (f(x)/g(x)) / g(x)

dy/dx = f’(x) (g(x)/g(x)) - g’(x) (f(x)/g(x)) / g(x)

dy/dx = f’(x)g(x) - g’(x)f(x) / \[g(x)\]^2
11
New cards
Limits…
can exist at continuous points & removal discontinuity - cannot exist at vertical asymptotes & jump discontinuity
12
New cards
If lim f(x) ≠ lim f(x) …

x→ a^- x→ a^+
it is a jump discontinuity
13
New cards
If f(a) ≠ lim f(x) ≠ lim f(x) …

x→ a^- x→ a^+
it is a removal discontinuity
14
New cards
If f(a) = lim f(x) = lim f(x) …

x→a^- x→a^+
it is continuous