f(x)=x^n P1 (a, a^n) P2(x, x^n)
f’(x)=lim x^n - a^n/ x - a
x→a
=lim (x - a)\[x^n-1 + xa^n-2 + x^n-3 a^2 +… + xa^n-2 + a^n-1\] x≠a
x→a
=lim \[x^n-1 + x^n-2 a + x^n-3 a^2 + x^n-4 a^3 + … + xa^n-2 + a^n-1\] sub x=a
x→a
=\[a^n-1 +a^n-2 a + a^n-3 a^2 + a^n-4 a^3 + … + aa^n-2 + a^n-1\]
= a^n-1 + a^n-1 + a^n-1 + a^n-1 + … + a^n-1 + a^n-1
= na^n-1
= nx^n-1