1/14
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
monomial; n even, a positive
D: (-inf, inf)
R: (0, inf)
x-int: (0,0)
y-int: (0,0)
continuity: across domain
symmetry: y-axis
min: (0,0)
max: none
incr: (0, inf)
decr: (-inf, 0)
end:
lim(x→inf) f(x) = inf
lim(x→-inf) f(x) = inf
monomial; n even, a negative
D: (-inf, inf)
R: (-inf, 0)
x-int: (0,0)
y-int: (0,0)
continuity: across domain
symmetry: y-axis
min: none
max: (0,0)
incr: (-inf, 0)
decr: (0, inf)
end:
lim(x→inf) f(x) = -inf
lim(x→-inf) f(x) = -inf
monomial; n odd, a positive
[NUMBER 1]
D: (-inf, inf)
R: (-inf, inf)
x-int: (0,0)
y-int: (0,0)
continuity: across domain
symmetry: origin
min: none
max: none
incr: (-inf, inf)
decr: none
end:
lim(x→inf) f(x) = inf
lim(x→-inf) f(x) = -inf
monomial; n odd, a negative
D: (-inf, inf)
R: (-inf, inf)
x-int: (0,0)
y-int: (0,0)
continuity: across domain
symmetry: y-axis
min: (0,0)
max: none
incr: (0, inf)
decr: (-inf, 0)
end:
lim(x→inf) f(x) = -inf
lim(x→-inf) f(x) = inf
reciprocal function
f(x) = x^-1 or f(x) = 1/x
causes DISCO in monomial functions
rational exponents
f(x) = x^(1/n)
restricts domain to NONENGATIVES (0 and above)
radical; n even
D: [0, inf]
R: [0, inf)
x-int: (0,0)
y-int: (0,0)
continuity: across x>= 0
symmetry: none
min: (0,0)
max: none
incr: [0, inf)
decr: none
end:
lim(x→inf) f(x) = inf
radical; n odd
[NUMBER 2]
D: (-inf, inf)
R: (-inf, inf)
x-int: (0,0)
y-int: (0,0)
continuity: across domain
symmetry: origin
min: none
max: none
incr: (-inf, inf)
decr: none
end:
lim(x→inf) f(x) = inf
lim(x→-inf) f(x) = -inf
polynomial; n even, an positive
lim(x→inf) f(x) = inf
lim(x→-inf) f(x) = inf
polynomial; n even, an negative
lim(x→inf) f(x) = -inf
lim(x→-inf) f(x) = -inf
polynomial; n odd, an positive
lim(x→inf) f(x) = inf
lim(x→-inf) f(x) = -inf
polynomial; n odd, an negative
lim(x→inf) f(x) = -inf
lim(x→-inf) f(x) = inf
multiplicity
number of times a specific zero appears
determines whether zero “bounces” (even) or goes through (odd)
remainder theorem
if polynomial f(x) is divided by (x-c), then remainder r = f(c)
factor theorem
if polynomial f(x) has factor (x-c) only if f(c) = 0