PRE CALC -- 2.1-2.3 Quiz Prep

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall with Kai
GameKnowt Play
New
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/14

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

15 Terms

1
New cards

monomial; n even, a positive

  • D: (-inf, inf)

  • R: (0, inf)

  • x-int: (0,0)

  • y-int: (0,0)

  • continuity: across domain

  • symmetry: y-axis

  • min: (0,0)

  • max: none

  • incr: (0, inf)

  • decr: (-inf, 0)

  • end:

    • lim(x→inf) f(x) = inf

    • lim(x→-inf) f(x) = inf

2
New cards

monomial; n even, a negative

  • D: (-inf, inf)

  • R: (-inf, 0)

  • x-int: (0,0)

  • y-int: (0,0)

  • continuity: across domain

  • symmetry: y-axis

  • min: none

  • max: (0,0)

  • incr: (-inf, 0)

  • decr: (0, inf)

  • end:

    • lim(x→inf) f(x) = -inf

    • lim(x→-inf) f(x) = -inf

3
New cards

monomial; n odd, a positive

[NUMBER 1]

  • D: (-inf, inf)

  • R: (-inf, inf)

  • x-int: (0,0)

  • y-int: (0,0)

  • continuity: across domain

  • symmetry: origin

  • min: none

  • max: none

  • incr: (-inf, inf)

  • decr: none

  • end:

    • lim(x→inf) f(x) = inf

    • lim(x→-inf) f(x) = -inf

4
New cards

monomial; n odd, a negative

  • D: (-inf, inf)

  • R: (-inf, inf)

  • x-int: (0,0)

  • y-int: (0,0)

  • continuity: across domain

  • symmetry: y-axis

  • min: (0,0)

  • max: none

  • incr: (0, inf)

  • decr: (-inf, 0)

  • end:

    • lim(x→inf) f(x) = -inf

    • lim(x→-inf) f(x) = inf

5
New cards

reciprocal function

f(x) = x^-1 or f(x) = 1/x

causes DISCO in monomial functions

6
New cards

rational exponents

f(x) = x^(1/n)

restricts domain to NONENGATIVES (0 and above)

7
New cards

radical; n even

  • D: [0, inf]

  • R: [0, inf)

  • x-int: (0,0)

  • y-int: (0,0)

  • continuity: across x>= 0

  • symmetry: none

  • min: (0,0)

  • max: none

  • incr: [0, inf)

  • decr: none

  • end:

    • lim(x→inf) f(x) = inf

8
New cards

radical; n odd

[NUMBER 2]

  • D: (-inf, inf)

  • R: (-inf, inf)

  • x-int: (0,0)

  • y-int: (0,0)

  • continuity: across domain

  • symmetry: origin

  • min: none

  • max: none

  • incr: (-inf, inf)

  • decr: none

  • end:

    • lim(x→inf) f(x) = inf

    • lim(x→-inf) f(x) = -inf

9
New cards

polynomial; n even, an positive

  • lim(x→inf) f(x) = inf

  • lim(x→-inf) f(x) = inf

10
New cards

polynomial; n even, an negative

  • lim(x→inf) f(x) = -inf

  • lim(x→-inf) f(x) = -inf

11
New cards

polynomial; n odd, an positive

  • lim(x→inf) f(x) = inf

  • lim(x→-inf) f(x) = -inf

12
New cards

polynomial; n odd, an negative

  • lim(x→inf) f(x) = -inf

  • lim(x→-inf) f(x) = inf

13
New cards

multiplicity

number of times a specific zero appears

determines whether zero “bounces” (even) or goes through (odd)

14
New cards

remainder theorem

if polynomial f(x) is divided by (x-c), then remainder r = f(c)

15
New cards

factor theorem

if polynomial f(x) has factor (x-c) only if f(c) = 0