1/54
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Reciprocal Identities
sinu =
1/cscu
cosu =
1/secu
tanu =
1/cotu
cscu =
1/sinu
secu =
1/cosu
cotu =
1/tanu
Pythagorean Identities
sin²u+cos²u =
1
sin²u =
1-cos²u
cos²u =
1-sin²u
tan²u+1 =
sec²u
tan²u =
sec²u - 1
1 =
sec²u - tan²u
1 + cot²u =
csc²u
1 =
csc²u - cot²u
cot²u =
csc²u-1
Co-Function Identities
sinθ =
cos(π/2-θ)
cosθ =
sin(π/2-θ)
tanθ =
cot(π/2-θ)
cscθ =
sec(π/2-θ)
secθ =
csc(π/2-θ)
cotθ =
tan(π/2-θ)
Even/ Odd Identities
sin(-θ) =
-sinθ
csc(-θ) =
-cscθ
tan(-θ) =
-tanθ
cot(-θ)
-cotθ
cos(-θ) =
cosθ
sec(-θ) =
secθ
Trig Memory Values (just to refresh)
cos30⁰ =
√3/2
cos60⁰ =
1/2
tan30⁰ =
1/√3
sin60⁰ =
√3/2
sin30° =
1/2
cot60° =
1/√3
Sum and Difference Formulas
sin(u + v) =
sinu cosv + cosu sinv
sin(u - v) =
sinu cosv - cosu sinv
cos(u + v) =
cosu cosv - sinu sinv
cos(u - v) =
cosu cosv + sinu sinv
tan(u + v) =
tanu + tannv/ 1 - tanu tanv
tan(u - v) =
tanu - tannv/ 1 + tanu tanv
Double Angle Formulas
sin2x =
2sinx cosx
tan2x =
2tanx/1-tan²x
cos2x =
cos²x - sin²x
cos2x =
1 - 2sin²x
cos2x =
2cos²x - 1
Power Reducing Formulas
sin²x =
1-cos2x/ 2
cos²x =
1 + cos2x/2
tan²x
1- cos2x/1+cos2x