sin(a + b) =
sina(cosb) + cosa(sinb)
sin(a - b) =
sina(cosb) - cosa(sinb)
cos(a + b) =
cosa(cosb) - sina(sinb)
cos(a - b) =
cosa(cosb) + sina(sinb)
tan(a + b) =
(tana + tanb)/(1 - tana(tanb))
tan(a - b) =
(tana - tanb)/(1 + tana(tanb))
sin(2a) =
2sina(cosa)
cos(2a)= (sine formula)
1 - 2sin²(a)
cos(2a)= (cosine formula)
2cos²(a) - 1
sin²a =
(-cos(2a))/2
cos²a =
(cos(2a) + 1)/2
tan²a =
(1 - cos(2a))/(1 + cos(2a)
sin(a/2) =
±√((1 - cosa)/2)
cos(a/2) =
±√((1 + cosa)/2)
tan(a/2) = (cosine only)
±√((1-cosa)/(1 + cosa))
tan(a/2) = (cosine on top)
(1 - cosa)/(sina)
tan(a/2) = (sine on top)
(sina)/(1 + cosa)
sin²x + cos²x =
1
csc²x =
1 + cot²x
tan²x =
sec²x - 1
sec²x =
tan²x + 1
arccos x =
arcsin√(1 - x²)
arcsinx =
arccos√(1 - x²)
Convert polar to rectangular
x = rcosθ
y = rsinθ
Convert rectangular to polar (when θ is in betwen 0 and 2pi)
r = √(x² + y²)
θ = arctan (y/x)
Convert rectangular complex to polar
r = √(x² + y²), θ = arctan (y/x)
x = real number, y = coefficent of imaginary for r, full number for θ
Convert polar to rectangular complex
x = rcosθ
y = rsinθ