Vitreous

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/9

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

10 Terms

1
New cards

Vitreous

Gel-like structure

Fills the vitreous chamber

Spherical except for Patellar Fossa

80% of entire globe

<p>Gel-like structure </p><p>Fills the vitreous chamber </p><p><strong>Spherical except for Patellar Fossa  </strong></p><p><strong>80% </strong>of entire globe</p>
2
New cards

Vitreous: Function

  1. Physical Support

    • Holds retina in place next to choroid

      • Neural retina + choroid only connected at optic disc and ora serrata

    • Shock absorber

      • Protects retina during eye movements, physical activity

  2. Transmit + Refract Light

    • Minimal light scatter due to:

      • High [water]

      • Hyaluronic acid/collagen complex spacing

  3. Diffusion Barrier

    • Between anterior and posterior segments

    • Prevents topical medications from reaching the retina/optic nerve

    • Entrance of medications from bloodstream rarely make it to anterior segment

  4. Metabolite Storage/Buffer

    • Reservoir for metabolites of:

      • Retina

      • Lens

      • Ciliary Body

3
New cards

Vitreal Attachments

Strongest → Weakest

  1. Vitreous Base

    • Strongest attachment (2)

    • At ora serrata (1)

      • 1.5-2 mm anterior

      • 1-3 mm posterior

    • Vitreal fibers embedded in BM of nonpigmented epithelium of the CB + ILM of retina

  2. Posterior to lens

    • Hyaloideocapsular ligament (of Weiger)

    • Retrolental ligament

      • Forms retrolental space of Berger

    • Annular attachment

    • 1-2 mm wide; 8-9 mm diameter

    • Firm attachment in youth, diminishes after age 35

  3. Optic Disc (Peripapillary)

    • Also diminishes with age

  4. Macular

    • 3-4 mm in diameter

  5. Retinal Vessels

    • Consists of fine strands that extend through ILM

    • May account for hemorrhages that occur with vitreoretinal traction

<p>Strongest → Weakest</p><ol><li><p><strong>Vitreous Base </strong></p><ul><li><p>Strongest attachment (2) </p></li><li><p>At<strong> ora serrata </strong>(1) </p><ul><li><p><strong>1.5-2 mm anterior </strong></p></li><li><p><strong>1-3 mm posterior </strong></p></li></ul></li><li><p>Vitreal fibers embedded in BM of nonpigmented epithelium of the CB + ILM of retina</p></li></ul></li><li><p><strong>Posterior to lens </strong></p><ul><li><p><strong>Hyaloideocapsular ligament (of Weiger) </strong></p></li><li><p>Retrolental ligament </p><ul><li><p>Forms <strong>retrolental space of Berger </strong></p></li></ul></li><li><p>Annular attachment </p></li><li><p><strong>1-2 mm wide</strong>; <strong>8-9 mm diameter </strong></p></li><li><p><strong>Firm attachment in youth, diminishes after age 35</strong></p></li></ul></li><li><p><strong>Optic Disc (Peripapillary) </strong></p><ul><li><p>Also <strong>diminishes with age</strong></p></li></ul></li><li><p><strong>Macular </strong></p><ul><li><p><strong>3-4 mm </strong>in diameter</p></li></ul></li><li><p><strong>Retinal Vessels</strong></p><ul><li><p>Consists of<strong> fine strands that extend through ILM </strong></p></li><li><p>May account for hemorrhages that occur with vitreoretinal traction</p></li></ul></li></ol><p></p>
4
New cards

Vitreous Zones

  1. Vitreous Cortex

    • AKA: Hyaloid Surface

    • Outer zone

    • Tightly packed collagen fibrils

      • Parallel + perpendicular to retinal surface

    • Anterior Vitreous Cortex:

      • Anterior to vitreous base

      • Adjacent to CB, posterior chamber, + lens

    • Posterior Vitreous Cortex

      • Posterior to vitreous base

      • In contact with the retina

      • Contains transvitreal channels that appear as holes

    • Posterior Vitreous Cortex: Transvitreal Channels

      • Prepapillary hole

      • Premacular hole

      • Prevascular fissures

  2. Intermediate Zone

    • Continuous + unbranched fine fibers

    • Run anteroposteriorly

    • Arise near vitreous base, insert into posterior cortex

    • Vitreous tracts

      • Areas having different fiber densities

  3. Cloquet’s Canal

    • AKA hyaloid channel, retrolental tract

    • Center of vitreous body

    • Former site of hyaloid artery system

    • Arises in retrolental space

    • Terminates in area of Martegiani

      • Funnel-shaped space at optic nerve

<ol><li><p><strong>Vitreous Cortex</strong></p><ul><li><p>AKA:<strong> Hyaloid Surface </strong></p></li><li><p><strong>Outer </strong>zone </p></li><li><p>Tightly packed collagen fibrils </p><ul><li><p><strong>Parallel + perpendicular to retinal surface </strong></p></li></ul></li><li><p><strong>Anterior Vitreous Cortex: </strong></p><ul><li><p>Anterior to vitreous base </p></li><li><p>Adjacent to CB, posterior chamber, + lens</p></li></ul></li><li><p><strong>Posterior Vitreous Cortex </strong></p><ul><li><p>Posterior to vitreous base </p></li><li><p>In <strong>contact with the retina </strong></p></li><li><p>Contains transvitreal channels that appear as holes</p></li></ul></li><li><p>Posterior Vitreous Cortex: <strong>Transvitreal Channels </strong></p><ul><li><p><strong>Prepapillary hole </strong></p></li><li><p><strong>Premacular hole </strong></p></li><li><p><strong>Prevascular fissures</strong></p></li></ul></li></ul></li><li><p><strong>Intermediate Zone</strong></p><ul><li><p>Continuous + <strong>unbranched </strong>fine fibers </p></li><li><p>Run <strong>anteroposteriorly </strong></p></li><li><p>Aris<strong>e near vitreous base</strong>, insert <strong>into posterior cortex </strong></p></li><li><p>Vitreous tracts </p><ul><li><p>Areas having different fiber densities</p></li></ul></li></ul></li><li><p><strong>Cloquet’s Canal</strong></p><ul><li><p>AKA <strong>hyaloid channel, retrolental tract </strong></p></li><li><p><strong>Center </strong>of vitreous body </p></li><li><p><strong>Former site of hyaloid artery system </strong></p></li><li><p>Arises in <strong>retrolental space </strong></p></li><li><p>Terminates in <strong>area of Martegiani </strong></p><ul><li><p>Funnel-shaped space at optic nerve</p></li></ul></li></ul></li></ol><p></p>
5
New cards
<p>Vitreal Composition</p>

Vitreal Composition

98.5-99.7% water

Dilute solution of salts, soluble proteins, + hyaluronic acid

Collagen meshwork (insoluble protein)

Three major components (besides water):

  1. Collagen

    • Collagen content highest:

      • Vitreous base > posterior cortex > anterior cortex > center

    • Mostly Collagen Type II

    • 3 identical α-chains form a triple helix

    • Collagen fibrils interconnect with hyaluronic acid

  2. Hyaluronic Acid

    • Glycosaminoglycan

    • Long, unbranched coiled molecule

    • Hydrophilic

    • Maintains wide spacing between fibrils

    • Stabilizes the network formed by collagen strand

    • Concentration distribution similar to collagen

  3. Hyalocytes

    • Vitreal cells (specific to vitreous)

    • Single, widely spaced layer in cortex near vitreal surface

    • Synthesize hyaluronic acid & Glycoproteins

    • Phagocytic properties- break down metabolic waste

    • Fibroblasts also located in vitreous base,

      • May be mistaken for hyalocytes

      • Synthesize collagen fibrils

      • Active in pathology

<p><strong>98.5-99.7% water </strong></p><p>Dilute solution of salts, soluble proteins, + hyaluronic acid </p><p>Collagen meshwork (insoluble protein) </p><p>Three major components (besides water):</p><ol><li><p><strong>Collagen</strong></p><ul><li><p>Collagen content highest: </p><ul><li><p><strong>Vitreous base &gt; posterior cortex &gt; anterior cortex &gt; center </strong></p></li></ul></li><li><p>Mostly Collagen<strong> Type II </strong></p></li><li><p><strong>3 identical α-chains form a triple helix </strong></p></li><li><p>Collagen fibrils <strong>interconnect with hyaluronic acid</strong></p></li></ul></li><li><p><strong>Hyaluronic Acid</strong></p><ul><li><p><strong>Glycosaminoglycan</strong> </p></li><li><p>Long, unbranched coiled molecule </p></li><li><p><strong>Hydrophilic </strong></p></li><li><p><strong>Maintains wide spacing</strong> between fibrils </p></li><li><p>Stabilizes the network formed by collagen strand </p></li><li><p><strong>Concentration distribution similar to collagen</strong></p></li></ul></li><li><p><strong>Hyalocytes</strong></p><ul><li><p><strong>Vitreal cells </strong>(specific to vitreous)</p></li><li><p><strong>Single, widely spaced layer in cortex </strong>near vitreal surface </p></li><li><p>Synthesize hyaluronic acid &amp; Glycoproteins </p></li><li><p>Phagocytic properties- <strong>break down metabolic waste</strong></p></li><li><p><strong>Fibroblasts</strong> also located in vitreous base, </p><ul><li><p>May be mistaken for hyalocytes </p></li><li><p><strong>Synthesize collagen fibrils </strong></p></li><li><p><strong>Active in pathology</strong></p></li></ul></li></ul></li></ol><p></p>
6
New cards
<p>Vitreal Composition: <strong>Change with Age</strong></p>

Vitreal Composition: Change with Age

Liquefaction

Infant vitreous: homogenous gel

With age, gel volume decreases & liquid volume increases

  • 40 yrs: 80% gel/20% liquid

  • 80 yrs: 50% liquid

Exact molecular mechanism unclear

Hyaluronic acid is redistributed from the gel to the liquid

Most liquefaction in center, where there is the least amount of collagen

Gel dissolves and is replaced with lacunae

Lacunae melt together over time

Age-related vitreal changes are associated with age related ocular disease:

  • Nuclear sclerotic cataract

  • Diabetic retinopathy

Intact, normally composed vitreous provides “protection

  • Brings nutrients to ocular structures

  • Takes waste, metabolites, bad stuff away

<p><strong>Liquefaction</strong></p><p>Infant vitreous: homogenous gel </p><p>With age, gel volume decreases &amp; liquid volume increases </p><ul><li><p><strong>40 yrs</strong>: <strong>80% gel/20% liquid </strong></p></li><li><p><strong>80 yrs</strong>: <strong>50% liquid</strong></p></li></ul><p>Exact molecular mechanism unclear </p><p>Hyaluronic acid is redistributed from the gel to the liquid</p><p><strong>Most liquefaction in cente</strong>r, where there is the<strong> least amount of collagen </strong></p><p><strong>Gel dissolves </strong>and is <strong>replaced with lacunae </strong></p><p><strong>Lacunae melt together over time</strong></p><p>Age-related vitreal changes are associated with age related ocular disease: </p><ul><li><p><strong>Nuclear sclerotic cataract </strong></p></li><li><p><strong>Diabetic retinopathy </strong></p></li></ul><p>Intact, normally composed vitreous provides “<strong>protection</strong>” </p><ul><li><p>Brings nutrients to ocular structures </p></li><li><p>Takes waste, metabolites, bad stuff away</p></li></ul><p></p>
7
New cards

Clinical Connection: Floaters

As vitreous gel liquefies, collagen complexes form clumps & bundles

Shadows cast on retina, seen as floating spots

Most noticeable on white wall/blue sky

May be a sign of retinal pathology

<p>As vitreous gel liquefies, <strong>collagen complexes form clumps &amp; bundles </strong></p><p><strong>Shadows cast on retina</strong>, seen as floating spots </p><p>Most <strong>noticeable on white wall/blue sky  </strong></p><p>May be a <strong>sign of retinal pathology</strong></p>
8
New cards
<p>Clinical Connection: <strong>Posterior Vitreous Detachment (PVD)</strong></p>

Clinical Connection: Posterior Vitreous Detachment (PVD)

Collapse of the vitreous body

  • Cortex sinks to center

Due to normal liquefaction and age changes

Posterior vitreous detaches from the retinal internal limiting membrane at the peripapillary ring

May occur prematurely in cases of trauma, high myopia, etc.

Weiss Ring (Senile Annular Ring)

  • Glial tissue from peripapillary attachment may remain in vitreous after PVD

  • Appears as a circular ring on examination, just over the nerve

  • Patient may see large floaters for days/weeks after detachment

During acute PVD stage, patients may notice an increase in floaters

If there is a particularly strong attachment between the posterior hyaloid and the ILM of the retina, a PVD may result in:

  • A retinal break (tear, hole)

  • Vitreo-retinal traction, especially in the foveal region

Monitor patients 4-6 weeks after PVD onset for retinal complications

<p>Collapse of the vitreous body </p><ul><li><p><strong>Cortex sinks to center </strong></p></li></ul><p>Due to<strong> normal liquefaction and age changes </strong></p><p><strong>Posterior vitreous detaches </strong>from the retinal internal limiting membrane <strong>at the peripapillary ring </strong></p><p>May occur prematurely in cases of trauma, high myopia, etc.</p><p><strong>Weiss Ring (Senile Annular Ring) </strong></p><ul><li><p>Glial tissue from peripapillary attachment may remain in vitreous after PVD </p></li><li><p>Appears as a circular ring on examination, just over the nerve </p></li><li><p>Patient may see large floaters for days/weeks after detachment</p></li></ul><p><strong>During acute PVD stage</strong>, patients may notice an <strong>increase in floaters </strong></p><p>If there is a<strong> particularly strong attachment</strong> between the posterior hyaloid and the ILM of the retina, a PVD may result in: </p><ul><li><p>A<strong> retinal break (tear, hole) </strong></p></li><li><p><strong>Vitreo-retinal traction</strong>, especially in the <strong>foveal region </strong></p></li></ul><p><strong>Monitor patients 4-6 weeks after PVD onset </strong>for retinal complications</p>
9
New cards
<p>Clinical Connection: <strong>Vitreoretinal Traction</strong></p>

Clinical Connection: Vitreoretinal Traction

The Vitreoretinal Interface

Vitreous cortex attached to ILM at :

  • Vitreous base

  • Optic disc

  • Macula

  • Vessels

Strongest in youth

Traction may occur with

  • Liquefaction changes

  • Trauma

<p>The Vitreoretinal Interface </p><p>Vitreous cortex attached to ILM at : </p><ul><li><p><strong>Vitreous base </strong></p></li><li><p><strong>Optic disc </strong></p></li><li><p><strong>Macula </strong></p></li><li><p><strong>Vessels </strong></p></li></ul><p><strong>Strongest in youth </strong></p><p>Traction may occur with </p><ul><li><p>Liquefaction changes </p></li><li><p>Trauma</p></li></ul><p></p>
10
New cards

Clinical Connection: Vitreoretinal Traction + Floaters

Treatment

  • Monitor

  • Vitrectomy

  • Medication/Injectables

  • Laser surgery- target disruptive floaters but not recommended