1/15
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No analytics yet
Send a link to your students to track their progress
sin(arccosx)
squareroot of(1-x^2)
sin(arcsin x)
x
cos(arcsin x)
sqrt{1-x^{2}}
tan(arcsin x)
frac{x}{sqrt{1-x^{2}}}
sin(arccos x)
sqrt{1-x^{2}}
cos(arccos x)
x
tan(arccos x)
frac{sqrt{1-x^{2}}}{x}
sin(arctan x)
frac{x}{sqrt{x^{2}+1}}
cos(arctan x)
frac{1}{sqrt{x^{2}+1}}
tan(arctan x)
x
How do you derive a composite inverse trig function like cos(arcsin x)?
Substitute: Let θ equal the inner inverse trig function (e.g., θ =arcsin x). Rewrite: The problem becomes the outer trig function of θ (e.g., cos(θ)). Draw a Triangle: Sketch a right triangle and label one acute angle θ. Label Sides: Use the substituted equation (sin θ =x) and the definition of the trig function to label two sides of the triangle. Pythagorean Theorem: Use a^{2}+b^{2}=c^{2} to find the length of the third side. Solve: Use the triangle to find the value of the final expression.
How do you derive the formula for cos(arcsin x)?
Let θ =arcsin x, so sin θ =x=frac{x}{1}. Draw a right triangle with opposite side x and hypotenuse 1. Find the adjacent side using the Pythagorean theorem: adjacent=sqrt{1^{2}-x^{2}}=sqrt{1-x^{2}}. Find the cosine of θ: cos θ =frac{adjacent}{hypotenuse}=frac{sqrt{1-x^{2}}}{1}=sqrt{1-x^{2}}.
How do you derive the formula for sin(arccos x)?
Let θ =arccos x, so cos θ =x=frac{x}{1}. Draw a right triangle with adjacent side x and hypotenuse 1. Find the opposite side: opposite=sqrt{1^{2}-x^{2}}=sqrt{1-x^{2}}. Find the sine of θ: sin θ =frac{opposite}{hypotenuse}=frac{sqrt{1-x^{2}}}{1}=sqrt{1-x^{2}}.
How do you derive the formula for tan(arcsin x)?
Let θ =arcsin x, so sin θ =x=frac{x}{1}. Draw a right triangle with opposite side x and hypotenuse 1. Find the adjacent side: adjacent=sqrt{1-x^{2}}. Find the tangent of θ: tan θ =frac{opposite}{adjacent}=frac{x}{sqrt{1-x^{2}}}.
How do you derive the formula for sin(arctan x)?
Let θ =arctan x, so tan θ =x=frac{x}{1}. Draw a right triangle with opposite side x and adjacent side 1. Find the hypotenuse: hypotenuse=sqrt{x^{2}+1^{2}}=sqrt{x^{2}+1}. Find the sine of θ: sin θ =frac{opposite}{hypotenuse}=frac{x}{sqrt{x^{2}+1}}.
How do you derive the formula for cos(arctan x)?
Let θ =arctan x, so tan θ =x=frac{x}{1}. Draw a right triangle with opposite side x and adjacent side 1. Find the hypotenuse: hypotenuse=sqrt{x^{2}+1}. Find the cosine of θ: cos θ =frac{adjacent}{hypotenuse}=frac{1}{sqrt{x^{2}+1}}.