Nucleic acids and protein synthesis

0.0(0)
studied byStudied by 0 people
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/10

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

11 Terms

1
New cards

Requirements of a Genetic Material

  • Must have:

    • Ability to store information → instructions to control cell behaviour.

    • Ability to copy itself accurately → ensures no loss of information during cell division.

  • Early assumption (before 1940s): proteins carried genetic info (thought too complex for DNA).

  • 1940s–50s: Experiments proved DNA is the genetic molecule.

2
New cards
<p>Structure of DNA and RNA</p>

Structure of DNA and RNA

  • DNA → Deoxyribonucleic acid.

  • RNA → Ribonucleic acid.

  • Both are nucleic acids (originally found in nucleus).

  • Both are polymers (polynucleotides) → built from nucleotides (monomers).

<ul><li><p><strong>DNA</strong> → Deoxyribonucleic acid.</p></li><li><p><strong>RNA</strong> → Ribonucleic acid.</p></li><li><p>Both are <strong>nucleic acids</strong> (originally found in nucleus).</p></li><li><p>Both are <strong>polymers (polynucleotides)</strong> → built from <strong>nucleotides (monomers)</strong>.</p></li></ul><p></p>
3
New cards

Nucleotides components

  • Nitrogen-containing base

    • DNA: A (adenine), G (guanine), T (thymine), C (cytosine).

    • RNA: A, G, C, U (uracil replaces T).

    • Purines (2 rings): A, G.

    • Pyrimidines (1 ring): T, C, U.

  • Pentose sugar

    • Ribose → RNA.

    • Deoxyribose → DNA (one oxygen atom less).

  • Phosphate group → gives acidic nature.

4
New cards

ATP

  • A nucleotide, not part of DNA/RNA.

  • Structure: adenine + ribose + phosphate groups.

  • Forms:

    • AMP (adenosine monophosphate).

    • ADP (adenosine diphosphate).

    • ATP (adenosine triphosphate).

  • Don’t confuse:

    • Adenine (base) vs. Adenosine (adenine + sugar).

    • Thymine (base) vs. Thiamine (vitamin).

<ul><li><p>A nucleotide, not part of DNA/RNA.</p></li><li><p>Structure: <strong>adenine + ribose + phosphate groups</strong>.</p></li><li><p>Forms:</p><ul><li><p>AMP (adenosine monophosphate).</p></li><li><p>ADP (adenosine diphosphate).</p></li><li><p>ATP (adenosine triphosphate).</p></li></ul></li><li><p><span data-name="warning" data-type="emoji">⚠</span> Don’t confuse:</p><ul><li><p><strong>Adenine</strong> (base) vs. <strong>Adenosine</strong> (adenine + sugar).</p></li><li><p><strong>Thymine</strong> (base) vs. <strong>Thiamine</strong> (vitamin).</p></li></ul></li></ul><p></p>
5
New cards

Polynucleotides

  • Nucleotides join via condensationphosphodiester bonds (phosphate + sugar).

  • Structure: sugar-phosphate backbone with bases projecting sideways.

  • Key terms:

    • Dinucleotide → two nucleotides joined by phosphodiester bond.

    • Phosphodiester bond → joins nucleotides, two ester bonds (one on each side).

6
New cards

Structure of DNA

  • Discovered by Watson & Crick (1953).

  • Features:

    • Two anti-parallel polynucleotide chains.

    • Twisted into double helix.

    • Held by hydrogen bonds between bases.

    • Complementary base pairing:

      • A pairs with T (2 hydrogen bonds).

      • G pairs with C (3 hydrogen bonds).

    • Purine always pairs with pyrimidine → width constant (3 rings).

    • One complete turn = 10 base pairs.

    • Base ratio rule (Chargaff):

      • %A ≈ %T, %G ≈ %C.

  • Information storage: sequence of bases = coded message.

  • Replication: possible by unzipping → each strand acts as template.

<ul><li><p>Discovered by <strong>Watson &amp; Crick (1953)</strong>.</p></li><li><p>Features:</p><ul><li><p>Two <strong>anti-parallel</strong> polynucleotide chains.</p></li><li><p>Twisted into <strong>double helix</strong>.</p></li><li><p>Held by <strong>hydrogen bonds</strong> between bases.</p></li><li><p><strong>Complementary base pairing</strong>:</p><ul><li><p>A pairs with T (2 hydrogen bonds).</p></li><li><p>G pairs with C (3 hydrogen bonds).</p></li></ul></li><li><p>Purine always pairs with pyrimidine → width constant (3 rings).</p></li><li><p>One complete turn = <strong>10 base pairs</strong>.</p></li><li><p>Base ratio rule (Chargaff):</p><ul><li><p>%A ≈ %T, %G ≈ %C.</p></li></ul></li></ul></li><li><p><strong>Information storage</strong>: sequence of bases = coded message.</p></li><li><p><strong>Replication</strong>: possible by unzipping → each strand acts as template.</p></li></ul><p></p>
7
New cards
<p>Structure of RNA</p>

Structure of RNA

  • Single polynucleotide strand.

  • Types:

    • mRNA → messenger, carries code to ribosome.

    • tRNA → transfer, carries amino acids.

    • rRNA → ribosomal, structural component of ribosomes.

8
New cards

DNA Replication

  • Occurs during S phase of cell cycle.

  • Steps:

    1. DNA unzips (hydrogen bonds broken).

    2. DNA polymerase attaches to each strand, adds complementary nucleotides (5′ → 3′ direction).

      • Leading strand → continuous replication.

      • Lagging strand → discontinuous replication → short Okazaki fragments.

    3. DNA ligase joins nucleotides and Okazaki fragments with phosphodiester bonds.

  • Semi-conservative replication → each new DNA has one original strand + one new strand.

<ul><li><p>Occurs during <strong>S phase</strong> of cell cycle.</p></li><li><p><strong>Steps</strong>:</p><ol><li><p>DNA <strong>unzips</strong> (hydrogen bonds broken).</p></li><li><p><strong>DNA polymerase</strong> attaches to each strand, adds complementary nucleotides (5′ → 3′ direction).</p><ul><li><p><strong>Leading strand</strong> → continuous replication.</p></li><li><p><strong>Lagging strand</strong> → discontinuous replication → short <strong>Okazaki fragments</strong>.</p></li></ul></li><li><p><strong>DNA ligase</strong> joins nucleotides and Okazaki fragments with <strong>phosphodiester bonds</strong>.</p></li></ol></li><li><p><strong>Semi-conservative replication</strong> → each new DNA has one original strand + one new strand.</p></li></ul><p></p>
9
New cards

The Genetic Code

  • Sequence of bases = code for sequence of amino acids in proteins.

  • Features:

    • Triplet code (3 bases = 1 amino acid).

    • Universal (same in all organisms).

    • Punctuated → start (e.g., TAC for methionine) & stop codons.

    • Redundant/degenerate → amino acids have more than one triplet.

<ul><li><p><strong>Sequence of bases = code for sequence of amino acids in proteins</strong>.</p></li><li><p>Features:</p><ul><li><p><strong>Triplet code</strong> (3 bases = 1 amino acid).</p></li><li><p><strong>Universal</strong> (same in all organisms).</p></li><li><p><strong>Punctuated</strong> → start (e.g., TAC for methionine) &amp; stop codons.</p></li><li><p><strong>Redundant/degenerate</strong> → amino acids have more than one triplet.</p></li></ul></li></ul><p></p>
10
New cards
<p>Protein Synthesis</p>

Protein Synthesis

Stage 1: Transcription (in nucleus)

  • DNA → mRNA.

  • Enzyme: RNA polymerase.

  • Only template strand copied.

  • Base pairing: A → U, G → C, T → A, C → G.

  • Primary transcript → modified by RNA processing.

    • Introns removed, exons joined (splicing).

    • Alternative splicing → different proteins from same gene.

  • mRNA leaves nucleus via nuclear pore.

Stage 2: Translation (at ribosomes)

  • mRNA → polypeptide.

  • tRNA:

    • Carries amino acid at one end.

    • Has anticodon (3 bases complementary to mRNA codon).

  • Steps:

    1. tRNA binds to codon on mRNA.

    2. Ribosome holds two tRNAs side by side → peptide bond forms.

    3. Ribosome moves along mRNA, process repeats.

    4. Stops at stop codon → polypeptide released and folded.

<p><strong>Stage 1: Transcription (in nucleus)</strong> </p><ul><li><p><strong>DNA → mRNA</strong>.</p></li><li><p>Enzyme: <strong>RNA polymerase</strong>.</p></li><li><p>Only <strong>template strand</strong> copied.</p></li><li><p>Base pairing: A → U, G → C, T → A, C → G.</p></li><li><p><strong>Primary transcript</strong> → modified by <strong>RNA processing</strong>.</p><ul><li><p>Introns removed, exons joined (splicing).</p></li><li><p>Alternative splicing → different proteins from same gene.</p></li></ul></li><li><p>mRNA leaves nucleus via nuclear pore.</p></li></ul><p> <strong>Stage 2: Translation (at ribosomes)</strong> </p><ul><li><p><strong>mRNA → polypeptide</strong>.</p></li><li><p><strong>tRNA</strong>:</p><ul><li><p>Carries amino acid at one end.</p></li><li><p>Has <strong>anticodon</strong> (3 bases complementary to mRNA codon).</p></li></ul></li><li><p>Steps:</p><ol><li><p>tRNA binds to codon on mRNA.</p></li><li><p>Ribosome holds two tRNAs side by side → peptide bond forms.</p></li><li><p>Ribosome moves along mRNA, process repeats.</p></li><li><p>Stops at stop codon → polypeptide released and folded.</p></li></ol></li></ul><p></p>
11
New cards

Gene Mutations

  • Mutation = random change in DNA base sequence.

  • Caused by copying errors, radiation, carcinogens (mutagens).

  • Types:

    1. Substitution → one base replaced.

      • May change amino acid (missense), no change (silent), or stop codon (nonsense).

      • Example: Sickle cell anaemia (Glu → Val substitution in haemoglobin β-chain).

    2. Deletion → base removed.

    3. Insertion → base added.

    • Deletion/insertion → frame-shift mutations → big effect on protein.