cos^2(x)+sin^2(x)=
1
1+tan^2(x)=
sec^2(x)
cot^2(x)+1=
csc^2(x)
tan(x)=
sin(x)/cos(x)
cot(x)=
cos(x)/sin(x)
sin(-x)=
-sin(x)
cos(-x)=
cos(x)
tan(-x)=
-tan(x)
csc(-x)=
-csc(x)
sec(-x)=
sec(x)
cot(-x)=
-cot(x)
csc(x)=
1/sin(x)
sec(x)=
1/cos(x)
cot(x)=
1/tan(x)
sin(x)=
1/csc(x)
cos(x)=
1/sec(x)
tan(x)=
1/cot(x)
sin(x)=
cos (pi/2-x)
cos(x)=
sin (pi/2-x)
tan(x)=
cot (pi/2-x)
csc(x)=
sec (pi/2-x)
sec(x)=
csc (pi/2-x)
cot(x)=
tan (pi/2-x)
cos(x+-y)=
cos(x)cos(y) +- sin(x)sin(y)
sin(x+-y)=
sin(x)sin(y)+-cos(x)cos(y)
tan(x+-y)=
tan(x)+-tan(y)/1+-tan(x)tan(y)
sin2(x)=
2sin(x)cos(x)
cos2(x)=
cos^2(x)-sin^2(x)
2cos^2(x)-1
1-2sin^2(x)
tan2(x)=
2tan(x)/1-tan^2(x)
sin^2(x)=
1-cos2(x)/2
cos^2(x)=
1+cos2(x)/2
tan^2(x)=
1-cos2(x)/1+cos2(x)
sin(x/2)=
+-(1-cos(x)/2)^1/2
cos(x/2)=
+-(1+cos(x)/2)^1/2
tan (x/2)=
+-(1-cos(x))^1/2
(1-cos(x)/sin(x))^1/2
sin (x)/1+cos(x)
sinA/a=
sinB/b
sinC/c
Area of a triangle=
1/2 absinC
a^2=
b^2+c^2-2bc cosA
cosA=
b^2+c^2-a^2/2bc
Heron’s Formula Area=
(s(s-a)(s-b)(s-c))^1/2