1/82
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
d/dx (xn)
nxn-1
d/dx (sin x)
cos x
d/dx (cos x)
-sin x
d/dx (tan x)
sec2 x
d/dx (cot x)
-csc2 x
d/dx (sec x)
sec x tan x
d/dx (csc x)
-csc x cot x
d/dx (ln u)
1/u du/dx
d/dx (eu)
eu du/dx
If f has an inverse function g then:
g’(x) = 1/f’(g(x)) because derivatives are reciprocal slopes
Average Rate of Change
f(b)-f(a)/b-a
Instantaneous Rate of Change
f’(x)h-0 = lim f(x+h)-f(x)/h
Local Minimum dy/dx goes from
Negative to Positive
Local Minimum d2y/dx2 Derivative
Greater than 0
Local Maximum dy/dx goes from
Positive to Negative
Local Maximum d2y/dx2 Derivative
Less than 0
Point of Inflection
Concavity Changes
f’(x)>0
function is increasing
f’(x)<0
function is decreasing
f’’(x)>0
concave up
f’’(x)<0
concave down
Relative Maximum 2nd Derivative
f’’(x)<0
Relative Minimum 2nd Derivative
f’’(x)>0
write the equation of a tangent line
y-y1= m(x-x1)
If acceleration and velocity have the same sign then
the speed is increasing
If acceleration and velocity have different signs then
the speed is decreasing
The particle is moving right when velocity is
positive
The particle is moving left when velocity is
negative
Displacement
Integral v(t)dt
Total Distance
Integral final time over initial time (Absolute value of v(t))dt
Average Velocity
final position-initial position/total time
Accumulation
x(0)+Integral v(t)dt
ln N = p
ep =N
ln e
1
ln 1
0
ln(MN)
ln M + ln N
ln (M/N)
ln M - ln N
p times ln M
ln Mp
1st Fundamental Theorem of Calculus
Int b over a f(x)dx =F(b)-F(a)
Average Value of Integral
1/b-a Integral b over a f(x)dx
sin (0)
0
cos (0)
1
tan (0)
0
sin (pi/6)
1/2
cos (pi/6)
root 3/2
tan (pi/6)
root 3/3
sin (pi/4)
root 2/2
cos (pi/4)
root 2/2
tan (pi/4)
1
sin (pi/3)
root 3/2
cos (pi/3)
1/2
tan (pi/3)
root 3
sin (pi/2)
1
cos (pi/2)
0
tan (pi/2)
infinite
sin (pi)
0
cos (pi)
-1
tan (pi)
0
Trapezoidal Sum
1/2h(b1 + b2)
sin2 x+cos2 x
1
1+tan2 x
sec2 x
cot2 x +1
csc2 x
tan x
sin x/cos x
cot x
cos x/sin x
csc x
1/sin x
sec x
1/cos x
Integral du
u+C
Integral eu du
eu+C
Integral sin (u) du
-cos u + C
Integral cos (u) du
sin u + C
Integral tan (u) du
-1/cos u (absolute value) + C
Integral cot (u) du
1/sin u (absolute value) + C
Integral sec (u) du
1/sec u + tan u (absolute value) + C
Integral csc (u) du
-1/csc u + cot u (absolute value) + C
Integral sec2 (u) du
tan u + C
Integral csc2 (u) du
-cot u + C
Integral sec (u) tan (u) du
sec u + C
Integral csc (u) cot (u) du
-csc u + C
Square Cross Section
Integral (base)2 dx
Equilateral Triangle Cross Section
root ¾ Integral (base)2 dx
Isosceles Right Triangle Cross Section
¼ Integral (base)2 dx
Rectangle Cross Section
Integral (base times height) dx
Semi-Circle Cross Section
pi/2 Integral (radius)2 dx