1/58
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No analytics yet
Send a link to your students to track their progress
¬p
Negation of p, “not p”, 1 truth
p∧q
Conjunction of p and q, “p and q”, 1 truth
p∨q
Disjunction of p and q, “p or q”, 3 truths
p⊕q
Exclusive or of p and q, “p XOR q”, 2 truths
p→q
Conditional statement, “p implies q”, “q whenever p”, 3 truths
p↔q
Biconditional statement, “p if and only if q”, 2 truths
Converse of p→q
q→p
Contrapositive of p→q
¬q→¬p
Inverse of p→q
¬p→¬q
Precedence of Logical Operations
¬, ∧, ∨, →, ↔
Tautology
A compound proposition that is always true
Contradiction
A compound proposition that is always false
Contingency
A compound proposition that is neither a tautology or a contradiction
p≡q
Logical equivalence, “p and q are logically equivalent”
Conditional Disjunction Equivalence
p→q≡¬p∧q
Identity laws
p∧T≡p
p∨F≡p
Domination Laws
p∨T≡T
p∧F≡F
Idempotent Laws
p∨p≡p
p∧p≡p
Double Negation Law
¬(¬p)≡p
Commutative Laws
p∨q≡q∨p
p∧q≡q∧p
Associative Laws
(p∨q)∨r≡p∨(q∨r)
(p∧q)∧r≡p∧(q∧r)
Distributive Laws
p∨(q∧r)≡(p∨q)∧(p∨r)
p∧(q∨r)≡(p∧q)∨(p∧r)
De Morgan’s Laws
¬(p∧q)≡¬p∨¬q
¬(p∨q)≡¬p∧¬q
Absorption Laws
p∨(p∧q)≡p
p∧(p∨q)≡p
Negation Laws
p∨¬p≡T
p∧¬p≡F
Material Implication (or Implication Law)
p→q≡¬p∨q
Contrapositive Law
p→q≡¬q→¬p
Disjunction as Implication
p∨q≡¬p→q
Conjunction as Implication
p∧q≡¬(p→¬q)
Negation of Implication
¬(p→q)≡p∧¬q
Distributing the Premise over Conjunction
(p→q)∧(p→r)≡p→(q∧r)
Distributing the Conclusion over Disjunction
(p→r)∧(q→r)≡(p∨q)→r
Distributing the Premise over Disjunction
(p→q)∨(p→r)≡p→(q∨r)
Distributing the Conclusion over Conjunction
(p→r)∨(q→r)≡(p∧q)→r
Definition of the Biconditional Statement
p↔q≡(p→q)∧(q→p)
The Negation Equivalence
p↔q≡¬p↔¬q
The Matching Rule
p↔q≡(p∧q)∨(¬p∧¬q)
The Negation of a Biconditional
¬(p↔q)≡p↔¬q
Modus Ponens Argument
p→q
p
———
∴ q
Modus Tollens Argument
p→q
¬q
———
∴ ¬p
Hypothetical Syllogism
p→q
q→r
———
∴ p→r
Simplification
p∧q
———
∴ p
Disjunctive Syllogism
p∨q
¬p
———
∴ q
Conjunction
p
q
———
∴ p∧q
Addition
p
———
∴ p∨q
Resolution
p∨q
¬p∨r
———
∴ q∨r
Universal Quantification
∀xP(x), “For all x, P(x)”
Existential Quantification
∃xP(x), “There exists x such that P(x)”
Belongs to
∈
Negation of the Universal Quantifier
¬(∀xP(x))≡∃x¬P(x)
Negation of the Existential Quantifier
¬(∃xQ(X))≡∀x¬Q(x)
Nested Quantifier ∀x∀yP(x,y)
Set x to be some value and then check the validity for ∀yP(x,y). So long as this is true for every choice of x, ∀x∀yP(x,y) is true.
Nested Quantifier ∀x∃yP(x,y)
Set x to be some value and ensure that there is some y such that P(x,y) is true.
Nested Quantifier ∃x∀yP(x,y)
Loop through all x in the domain and check if at least 1 satisfies ∀yP(x,y).
Nested Quantifier ∃x∃yP(x,y)
Loop through all x and check if at least 1 y satisfies P(x,y)
Universal Instantiation
∀xP(x)
———
∴ P(c)
Universal generalization
P(c) (for some c)
———
∴ ∀xP(x)
Existential Instantiation
∃xP(x)
———
∴ P(c)
Existential Generalization
P(c)
———
∴ ∃xP(x)