It relates to the macroscopic properties of gases such as pressure, temperature, etc.
Every gas consists of small particles known as molecules.
The gas molecules are identical but different from those of another gas.
The volume of molecules is negligible compared to the volume of gas.
The density of a gas is constant at all points.
Consequently, pressure is exerted by gas molecules on the walls of the container.
No attractive or repulsive force exists between the gas molecules.
Pv = nRT
P = pressure
V = volume
n = no. of moles
R = Gas constant
T = temperature
The pressure exerted by N molecules of gas in a container is related to the average kinetic energy.
K avg = 3/2 kb T
K avg = average kinetic energy
kb = Boltzmann’s constant
T = temperature
It gives us a type of average speed that is easy to calculate from the temperature of the gas.
vrms = √3 kb T/ m
vrms = root mean square velocity
kb = Boltzmann’s constant
T = temperature
m = mass
The Kinetic theory of gases applies to a large number of particles.
Some molecules will be moving faster than average and some much slower.
It is a special case of the law of conservation of energy that describes processes in which only internal energy changes and the only energy transfers are by heat and work.
∆ U = Q + W
Q = heat added
W = work done by the system
∆ U = change in internal energy