1/45
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Product Rule for Derivatives
uv' + vu'
Quotient Rule for Derivatives
(bt' - tb') / b^2
Integral of x^n
∫x^n dx = (x^(n+1))/(n+1) + C, n ≠ -1
∫(1/x) dx
ln|x| + C
ln|u| + C
∫(1/u) du
tan(x)
sin(x) / cos(x)
sin^2(x) + cos^2(x)
1
tan^2(x)
sec^2(x) - 1
Chain Rule
f'(u) * u'
d/dx (x^n)
n * x^(n-1)
d/dx (log_a(x))
1 / (x * ln(a))
d/dx (e^x)
e^x
d/dx (a^x)
a^x * ln(a)
∫e^x dx
e^x + C
∫a^x dx
(a^x / ln(a)) + C
∫cos(x) dx
sin(x) + C
∫sin(x) dx
-cos(x) + C
∫sec^2(x) dx
tan(x) + C
∫tan(x) dx
-ln|cos(x)| + C
∫cot(x) dx
ln|sin(x)| + C
∫sec(x)tan(x) dx
sec(x) + C
∫csc^2(x) dx
-cot(x) + C
∫csc(x)cot(x) dx
-csc(x) + C
∫(u'/(a^2 + u^2))du
(1/a) * arctan(u/a) + C
∫(u'/√(a^2 - u^2)) du
arcsin(u/a) + C
d/dx (arcsin(x))
1/√(1 - x^2)
d/dx (arctan(x))
1/(1 + x^2)
Second Fundamental Theorem of Calculus (d/dx ∫[u to v] f(t) dt)
f(v)v' - f(u)u'
Trapezoidal Rule
w/2 * (h0 + 2h1 + 2h2 + … + 2hn-1 + h_n)
Alternating Series Error Bound
error < |a_n+1|
d/dx (sin(x))
cos(x)
d/dx (cos(x))
-sin(x)
d/dx (tan(x))
sec^2(x)
d/dx (cot(x))
-csc^2(x)
d/dx (sec(x))
sec(x)tan(x)
d/dx (csc(x))
-csc(x)cot(x)
Integration by Parts
u*v - ∫vdu
∫lnx dx
xlnx - x + C
dP/dt in Logistic Growth
kP(M - P)
P(t) in Logistic Growth
M / (1 + Ce^(-kt))
Carrying capacity
M
e^x Series
1 + x + (x^2)/2! + (x^3)/3! + …
sin(x) Series
x - (x^3)/3! + (x^5)/5! - …
cos(x) Series
1 - (x^2)/2! + (x^4)/4! - …
Taylor Series
f(c) + f'(c)(x-c) + (f''(c)(x-c)^2)/2! + (f'''(c)(x-c)^3)/3! + …
Maclaurin Series
Taylor series with c = 0