1/56
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Quadratic Formula
ax² + bx + c = 0, given by x = (-b ± √(b² - 4ac)) / (2a).
Distance Formula
d = √(x2 - x1)2 + (y2 - y1)2
Equation of a Circle
x2 + y2 = r2 center at (0,0) and radius = r
Equation of an Ellipse
(x-h)²/a² + (y-k)²/b² = 1 for center (h, k).
Area of a Trapezoid
½ [base1 + base2](height)
Area of a Parallelogram
(base)(height)
Area of an Equilateral Triangle
(s2 √3)/4
Area of a Circle
πr2 (circumference = 2πr)
Volume of a Sphere
(4/3)πr3
Surface Area of a Sphere
4πr2
Volume of a Right Circular Cylinder
πr2h
Surface Area of a Right Circular Cylinder
Lateral S.A.: 2πrh
Total S.A.: 2πrh + 2πr2
Volume of a Right Circular Cone
1/3πr2h
Sin(0)
0
Sin(π/6)
½
Sin(π/4)
√2/2
Sin(π/3)
√3/2
Sin(π/2)
1
Sin(π)
0
Sin(3π/2)
-1
Sin(2π)
0
Cos(0)
1
Cos(π/6)
√3/2
Cos(π/4)
√2/2
Cos(π/3)
½
Cos(π/2)
0
Cos(π)
-1
Cos(3π/2)
0
Cos(2π)
1
Tan(0)
0
Tan(π/6)
√3/3
Tan(π/4)
1
Tan(π/3)
√3
Tan(π/2)
Undefined
Tan(π)
0
Tan(3π/2)
Undefined
Tan(2π)
0
sin(2θ)
2sin(θ)cos(θ)
cos(2θ)
cos2 (θ) - sin2 (θ)
1 - 2sin2 (θ)
2cos2 (θ) - 12
cos2 (θ)
(1 + cos(2θ))/2
sin2 (θ)
(1 - cos(2θ))/2
sin2 (θ) + cos2 (θ)
1
1 + tan2 (θ)
sec2 (θ)
1 + cot2 (θ)
csc2 (θ)
limx→∞ 1/x
0
limx→0 (sin(x))/x
1
limh→0 (eh - 1)/h
1
limx→0 (cos(x)-1)/x
0
limh→∞(1 + 1/h)h
e
limx→0 (1+x)(1/x)
e
Definition of the Derivative of a Function
f’(x) = limh→0 (f (x+h) - f(x))/h