BC Calculus Yellow Board

0.0(0)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/62

flashcard set

Earn XP

Description and Tags

AB and BC Topics included

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

63 Terms

1
New cards

d/dx arcsin =

1/√1-u² * u’

2
New cards

d/dx arccos =

-1/√1-u² * u’

3
New cards

d/dx arctan =

1/1+u² * u’

4
New cards

d/dx arccot =

-1/√1+u² * u’

5
New cards

d/dx arcsec =

1/u√u²-1 * u’

6
New cards

d/dx arccsc =

-1/u√u²-1 * u’

7
New cards

d/dx logau =

1/(u ln a) * u’

8
New cards

d/dx au=

aulna*u’

9
New cards
10
New cards

abkp =

∑ᵇ⁻ᵃ⁄ₙ(a+⁽ᵇ⁻ᵃ⁾ᵏ⁄ₙ)p

11
New cards

sin²x+cos²x=

1

12
New cards

tan²x+1=

sec²x

13
New cards

cot²x+1=

csc²x

14
New cards

Disk formula

π∫(r²)

15
New cards

Washer Formula

π∫(big r)²-(small r)²

16
New cards

Shells Formula

2π∫r*h

17
New cards

Shells with gap

2π∫r(big height-small height)

18
New cards

Semicircle cross sections

∫½πr²; ᶠ⁽ˣ⁾⁻ᵍ⁽ˣ⁾⁄₂

19
New cards

equilateral triangle cross sections

∫(√3)/4 s²; s=f(x)-g(x)

20
New cards

Isosceles Right Triangle cross sections

∫½s²; s=f(x)-g(x)

21
New cards

Logistic Growth Formula

ky(1-y/L) or ky/L (L/y)

22
New cards

Euler’s Method

ynew=yold-y’∆x

23
New cards

Integration by Parts

∫udv=uv-∫vdu

24
New cards

Arc Length

∫√1+(f’(x))²

25
New cards

Parametric slope

(dy/dt)/(dx/dt)=dy/dx

26
New cards

parametric 2nd derivative

(d/dx dy/dx)/dx/dt

27
New cards

parametric arc length

∫√(dy/dt)²+(dx/dt)²

28
New cards

parametric speed

√(dy/dt)²+(dx/dt)²

29
New cards

parametric position

x(t)+∫x’(t) , y(t)+∫y’(t)

30
New cards

polar x coordinate conversion

x=rcosθ

31
New cards

polar y coordinate conversion

y=rsinθ

32
New cards

rose curve formula

r=asin(nθ) or r=acos(nθ)

33
New cards

#of petals

if n is odd petals=n; if n is even petals=2n

34
New cards

circle formulas

r=2asinθ or r=2acosθ

35
New cards

limacon formula

r=a±bsinθ or r=a±bcosθ

36
New cards

a/b<1

inner loop

37
New cards

a/b=1

cardioid

38
New cards

1<a/b<2

dimpled

39
New cards

a/b>2

convex

40
New cards

lemniscate formula

r²=a²sin(2θ) or r²=a²cos(2θ)

41
New cards

archimedian spiral formula

r=aθ

42
New cards

polar area

½∫r² dθ

43
New cards

polar area b/w curves

½∫(r1²-r2²) dθ

44
New cards

polar arc length

∫√r²+(dr/dθ)²

45
New cards

nth term test

take limit as k→∞, if lim=0, continue testing; if lim≠0, diverge

46
New cards

geometric series

∑ar^k if r<1 converge, if r≥1 diverge; a/1-r gives convergence value

47
New cards

p series

∑1/kp ; p>1 converge p≤1 diverge

48
New cards

Integral Test

must be continuous, decreasing, and positive. ∑u=∫f(x)

49
New cards

ratio test

∑uk; take lim k→∞ uk+1/uk = ρ; ρ<1 converge, p>1 diverge, ρ=1 indeterminate

50
New cards

Root test

same as ratio, take 1/k power

51
New cards

Comparison test

compare to smaller series that diverges or larger series that converges

52
New cards

limit comparison test

ak=series you want to prove, bk=known divergent/convergent, ak/bk=ρ, ρ>0 means valid comparison

53
New cards

Alternating Series

identify: (-1)^k ; ak+1<ak, lim k→∞ ak=0 means converge

54
New cards

Interval of Convergence

  1. ratio test

  2. set ρ<1

  3. check endpoints

55
New cards

Maclaurin series

f(0)+f’(0)x/1!+f”(0)x²/2!+f”’(0)x³/3!…

56
New cards

Taylor series

f©+f’©(x-c)/1!+f”©(x-c)²/2!…

57
New cards

La Grange Error Bound

|Rn|≤max|x-a|n+1/(n+1)! ; max value between a and x

58
New cards

Alternating Series Error Bound

|S-Sn|=|Rn|≤|an+1|

59
New cards

Power series 1/1-x

∑xk ; 1+x²+x³…

60
New cards

power series 1/1+x²

∑(-1)k*x2k ; 1-x²+x4-x6

61
New cards

power series ex

∑xk/k! ; 1+x+x²/2!+x³/3!…

62
New cards

power series sinx

∑(-1)kx2k+1/(2k+1)! ; x-x³/3!+x5/5!-x7/7!…

63
New cards

power series cosx

∑(-1)kx2k/(2k)! ; 1-x²/2!+x4/4!-x6/6!