d/dx arcsin =
1/√1-u² * u’
d/dx arccos =
-1/√1-u² * u’
d/dx arctan =
1/1+u² * u’
d/dx arccot =
-1/√1+u² * u’
d/dx arcsec =
1/u√u²-1 * u’
d/dx arccsc =
-1/u√u²-1 * u’
d/dx logau =
1/(u ln a) * u’
d/dx au=
aulna*u’
a∫bkp =
∑ᵇ⁻ᵃ⁄ₙ(a+⁽ᵇ⁻ᵃ⁾ᵏ⁄ₙ)p
sin²x+cos²x=
1
tan²x+1=
sec²x
cot²x+1=
csc²x
Disk formula
π∫(r²)
Washer Formula
π∫(big r)²-(small r)²
Shells Formula
2π∫r*h
Shells with gap
2π∫r(big height-small height)
Semicircle cross sections
∫½πr²; ᶠ⁽ˣ⁾⁻ᵍ⁽ˣ⁾⁄₂
equilateral triangle cross sections
∫(√3)/4 s²; s=f(x)-g(x)
Isosceles Right Triangle cross sections
∫½s²; s=f(x)-g(x)
Logistic Growth Formula
ky(1-y/L) or ky/L (L/y)
Euler’s Method
ynew=yold-y’∆x
Integration by Parts
∫udv=uv-∫vdu
Arc Length
∫√1+(f’(x))²
Parametric slope
(dy/dt)/(dx/dt)=dy/dx
parametric 2nd derivative
(d/dx dy/dx)/dx/dt
parametric arc length
∫√(dy/dt)²+(dx/dt)²
parametric speed
√(dy/dt)²+(dx/dt)²
parametric position
x(t)+∫x’(t) , y(t)+∫y’(t)
polar x coordinate conversion
x=rcosθ
polar y coordinate conversion
y=rsinθ
rose curve formula
r=asin(nθ) or r=acos(nθ)
#of petals
if n is odd petals=n; if n is even petals=2n
circle formulas
r=2asinθ or r=2acosθ
limacon formula
r=a±bsinθ or r=a±bcosθ
a/b<1
inner loop
a/b=1
cardioid
1<a/b<2
dimpled
a/b>2
convex
lemniscate formula
r²=a²sin(2θ) or r²=a²cos(2θ)
archimedian spiral formula
r=aθ
polar area
½∫r² dθ
polar area b/w curves
½∫(r1²-r2²) dθ
polar arc length
∫√r²+(dr/dθ)²
nth term test
take limit as k→∞, if lim=0, continue testing; if lim≠0, diverge
geometric series
∑ar^k if r<1 converge, if r≥1 diverge; a/1-r gives convergence value
p series
∑1/kp ; p>1 converge p≤1 diverge
Integral Test
must be continuous, decreasing, and positive. ∑u=∫f(x)
ratio test
∑uk; take lim k→∞ uk+1/uk = ρ; ρ<1 converge, p>1 diverge, ρ=1 indeterminate
Root test
same as ratio, take 1/k power
Comparison test
compare to smaller series that diverges or larger series that converges
limit comparison test
ak=series you want to prove, bk=known divergent/convergent, ak/bk=ρ, ρ>0 means valid comparison
Alternating Series
identify: (-1)^k ; ak+1<ak, lim k→∞ ak=0 means converge
Interval of Convergence
ratio test
set ρ<1
check endpoints
Maclaurin series
f(0)+f’(0)x/1!+f”(0)x²/2!+f”’(0)x³/3!…
Taylor series
f©+f’©(x-c)/1!+f”©(x-c)²/2!…
La Grange Error Bound
|Rn|≤max|x-a|n+1/(n+1)! ; max value between a and x
Alternating Series Error Bound
|S-Sn|=|Rn|≤|an+1|
Power series 1/1-x
∑xk ; 1+x²+x³…
power series 1/1+x²
∑(-1)k*x2k ; 1-x²+x4-x6…
power series ex
∑xk/k! ; 1+x+x²/2!+x³/3!…
power series sinx
∑(-1)kx2k+1/(2k+1)! ; x-x³/3!+x5/5!-x7/7!…
power series cosx
∑(-1)kx2k/(2k)! ; 1-x²/2!+x4/4!-x6/6!