1/15
These flashcards cover key integration rules related to trigonometric functions and their inverse, essential for understanding calculus in relation to trigonometry.
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
Integration Rule: sin(u) du
= -cos(u) + C
Integration Rule: cos(u) du
= sin(u) + C
Integration Rule: e^u du
= e^u + C
Integration Rule: u^n du
= (u^(n+1))/(n+1) + C
Integration Rule: u^(-1) du
= ln|u| + C
Integration of csc²(u) du
= -cot(u) + C
Integration of sec²(u) du
= tan(u) + C
Integration of csc(u) cot(u) du
= -csc(u) + C
Integration of sec(u) tan(u) du
= sec(u) + C
Integration of tan(u) du
= -ln|cos(u)| + C
Integration of cot(u) du
= ln|sin(u)| + C
Integration of sec(u) du
= ln|sec(u) + tan(u)| + C
Integration of csc(u) du
= -ln|csc(u) + cot(u)| + C
Integral du/(a²-u²)^1/2
= arcsin(u/a) + C
Integral du/a²+u²
= 1/a arctan(u/a) + C
Integral du/u(u²-a²)^1/2
= 1/a arcsec(u/a) + C