1/57
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
\frac{1}{csc (u)} =
sin (u)
\frac{1}{sec (u)} =
cos (u)
\frac{1}{cot (u)} =
tan (u)
\frac{1}{sin (u)} =
csc (u)
\frac{1}{cos (u)} =
sec (u)
\frac{1}{tan (u)} =
cot (u)
\frac{sin (u)}{cos (u)} =
tan (u)
\frac{cos (u)}{sin (u)} =
cot (u)
sin²(u) + cos²(u) =
1
1 + tan²(u) =
sec²(x)
1 + cot²(u) =
csc²(u)
1 - cos²(u) =
sin²(u)
1 - sin²(u) =
cos²(u)
sec²(u) - 1 =
tan²(u)
sin(\frac{π}{2} - u) =
cos(u)
cos(\frac{\pi}{2} - u) =
sin(u)
tan(\frac{\pi}{2} - u) =
cot(u)
sin(-u) =
-sin(u)
csc(-u) =
-csc(u)
cos(-u) =
cos(u)
sec(-u) =
sec(u)
tan(-u) =
-tan(u)
cot(-u) =
-cot(u)
sin(2u) =
2*sin(u)*cos(u)
cos(2u) =
cos²(u)-sin²(u)
2cos²(u)-1
1-2sin²(u)
tan(2u) =
\frac{2tan(u)}{1-tan²(u)}
sin²(u) =
\frac{1-cos(2u)}{2}
sin(\frac{u}{2}) =
\pm\sqrt{\frac{1-cos(u)}{2}}
cos²(u) =
\frac{1+cos(2u)}{2}
\cos(\frac{u}{2})=
\pm\sqrt{\frac{1+cos(u)}{2}}
tan(\frac{u}{2})
\pm\sqrt{\frac{1-cos(u)}{1+cos(u)}}
\tan^2\left(u\right)=
\frac{1-\cos\left(2u\right)}{1+\cos\left(2u\right)}
sin\left(u\right)=\frac{?}{?}
sin\left(u\right)=\frac{opp.}{hyp.}=\frac{y}{r}
\cos\left(u\right)=\frac{?}{?}
\cos\left(u\right)=\frac{adj.}{hyp.}=\frac{x}{r}
\tan\left(u\right)=\frac{?}{?}
\tan\left(u\right)=\frac{opp.}{adj.}=\frac{y}{x}
\csc\left(u\right)=\frac{?}{?}
\csc\left(u\right)=\frac{hyp.}{opp.}=\frac{r}{y}
\sec\left(u\right)=\frac{?}{?}
\sec\left(u\right)=\frac{hyp.}{adj.}=\frac{r}{x}
\cot\left(u\right)=\frac{?}{?}
\cot\left(u\right)=\frac{adj.}{opp.}=\frac{x}{y}
\left\vert r\right\vert=?
\left\vert r\right\vert=\sqrt{x^2+y^2}