Symmetrie bei geraden Funktionen
f(x) = f(-x) (Symmetrie zur y-Achse)
Symmetrie bei ungeraden Funktionen
f(x) = -f(-x) (Symmetrie zum Ursprung)
Verhalten im Unendlichen
Analyse der Grenzwerte und Bestimmung des Wachstumsverhaltens
Nullstellen
Punkte, an denen f(x) = 0; Graph schneidet die x-Achse.
Extrempunkte
Maxima und Minima, wo die Ableitung f'(x) = 0 ist.
Erste Ableitungstest
Wird verwendet zur Bestimmung von Extrempunkten.
Monotonie
Wachsend (f'(x) > 0) oder fallend (f'(x) < 0).
Wendepunkte
Punkte, an denen sich das Krümmungsverhalten ändert (f''(x) = 0).
Steigung
Bestimmt durch die Ableitung f'(x).
Steigungswinkel
α = arctan(f'(x)).
Schnittpunkte
Punkte, an denen zwei Funktionen sich schneiden (Lösen von f1(x) = f2(x)).
Schnittwinkel
Berechnung durch Steigungswinkel der beiden Funktionen.